Nothing Special   »   [go: up one dir, main page]

Skip to main content

Structural Properties of Biological and Ecological Systems

  • Reference work entry
  • First Online:
Encyclopedia of Systems and Control

Abstract

It is astounding how systems in nature can survive under completely different environmental conditions and in the presence of huge parameter variations. Structural analysis aims at explaining why this is possible by studying properties of biological models that hold regardless of parameter values. Here, we discuss selected system properties that have been successfully investigated and explained just looking at the structure, without the need of quantitative information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Bibliography

  • Alon U (2006) An introduction to systems biology: design principles of biological circuits. Chapman & Hall/CRC, Boca Raton

    Book  MATH  Google Scholar 

  • Al-Radhawi MA, Angeli D (2016) New approach to the stability of chemical reaction networks: piecewise linear in rates Lyapunov functions. IEEE Trans Autom Control 61(1):76–89

    Article  MathSciNet  MATH  Google Scholar 

  • Angeli D (2009) A tutorial on chemical reaction network dynamics. Eur J Control 15(3–4):398–406

    Article  MathSciNet  MATH  Google Scholar 

  • Angeli D, Sontag ED (2003) Monotone control systems. IEEE Trans Autom Control 48(10):1684–1698

    Article  MathSciNet  MATH  Google Scholar 

  • Blanchini F, Franco E (2011) Structurally robust biological networks. BMC Syst Biol 5(1):74

    Article  Google Scholar 

  • Blanchini F, Giordano G (2014) Piecewise-linear Lyapunov functions for structural stability of biochemical networks. Automatica 50(10):2482–2493

    Article  MathSciNet  MATH  Google Scholar 

  • Blanchini F, Miani S (2015) Set-theoretic methods in control, 2nd edn. Systems & control: foundations & applications. Birkhäuser, Basel

    Google Scholar 

  • Blanchini F, Franco E, Giordano G (2014) A structural classification of candidate oscillatory and multistationary biochemical systems. Bull Math Biol 76(10):2542–2569

    Article  MathSciNet  MATH  Google Scholar 

  • Blanchini F, Cuba Samaniego C, Franco E, Giordano G (2018a) Aggregates of monotonic step response systems: a structural classification. IEEE Control Netw Syst 5(2):782–792

    Article  MathSciNet  MATH  Google Scholar 

  • Blanchini F, Cuba Samaniego C, Franco E, Giordano G (2018b) Homogeneous time constants promote oscillations in negative feedback loops. ACS Synth Biol 7(6):1481–1487

    Article  Google Scholar 

  • Briat C, Gupta A, Khammash M (2016) Antithetic integral feedback ensures robust perfect adaptation in noisy biomolecular networks. Cell Syst 2(1): 15–26

    Article  Google Scholar 

  • Clarke BL (1980) Stability of complex reaction networks. In: Prigogine I, Rice SA (eds) Advances in chemical physics. Wiley, New York

    Google Scholar 

  • Cosentino C, Bates D (2011) Feedback control in systems biology. Taylor & Francis, Boca Raton/London

    Book  Google Scholar 

  • Dambacher J, Li H, Rossignol P (2002) Relevance of community structure in assessing indeterminacy of ecological predictions. Ecology 83(5):1372–1385

    Article  Google Scholar 

  • Del Vecchio D, Murray RM (2014) Biomolecular feedback systems. Princeton University Press, Princeton

    Book  MATH  Google Scholar 

  • Edelstein-Keshet L (2005) Mathematical models in biology. Volume 46 of classics in applied mathematics. SIAM, Philadelphia

    Google Scholar 

  • Feinberg M (1987) Chemical reaction network structure and the stability of complex isothermal reactors I. The deficiency zero and deficiency one theorems. Chem Eng Sci 42:2229–2268

    Google Scholar 

  • Giordano G, Cuba Samaniego C, Franco E, Blanchini F (2016) Computing the structural influence matrix for biological systems. J Math Biol 72(7):1927–1958

    Article  MathSciNet  MATH  Google Scholar 

  • Gouze JL (1998) Positive and negative circuits in dynamical systems. J Biol Syst 6:11–15

    Article  MATH  Google Scholar 

  • Hirsch MW, Smith H (2005) Monotone dynamical systems. In: Canada A, Drabek P, Fonda A (eds) Handbook of differential equations: ordinary differential equations, vol 2, Elsevier, pp 239–357

    Google Scholar 

  • Jacquez JA, Simon CP (1993) Qualitative theory of compartmental systems. SIAM Rev 35(1):43–79

    Article  MathSciNet  MATH  Google Scholar 

  • Lloyd NG (1978) Degree theory. Cambridge University Press, London

    MATH  Google Scholar 

  • Maeda H, Kodama S, Ohta Y (1978) Asymptotic behavior of nonlinear compartmental systems: nonoscillation and stability. IEEE Trans Circuits Syst 25(6):372–378

    Article  MathSciNet  MATH  Google Scholar 

  • May RM (1974) Stability and complexity in model ecosystems. Princeton University Press, Princeton

    Google Scholar 

  • Mincheva M, Craciun G (2008) Multigraph conditions for multistability, oscillations and pattern formation in biochemical reaction networks. Proc IEEE 96(8):1281–1291

    Article  Google Scholar 

  • Shinar G, Feinberg M (2010) Structural sources of robustness in biochemical reaction networks. Science 327(5971):1389–1391

    Article  Google Scholar 

  • Snoussi E (1998) Necessary conditions for multistationarity and stable periodicity. J Biol Syst 6:3–9

    Article  MATH  Google Scholar 

  • Sontag ED (2005) Molecular systems biology and control. Eur J Control 11(4–5):396–435

    Article  MathSciNet  MATH  Google Scholar 

  • Steuer R, Waldherr S, Sourjik V, Kollmann M (2011) Robust signal processing in living cells. PLoS Comput Biol 7(11):e1002218

    Article  MathSciNet  Google Scholar 

  • Thomas R (1981) On the relation between the logical structure of systems and their ability to generate multiple steady states or sustained oscillations. In: Della Dora J, Demongeot J, Lacolle B (eds) Numerical methods in the study of critical phenomena, vol 9. Springer series in synergetics. Springer, Berlin/Heidelberg

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franco Blanchini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Blanchini, F., Franco, E., Giordano, G. (2021). Structural Properties of Biological and Ecological Systems. In: Baillieul, J., Samad, T. (eds) Encyclopedia of Systems and Control. Springer, Cham. https://doi.org/10.1007/978-3-030-44184-5_100060

Download citation

Publish with us

Policies and ethics