Nothing Special   »   [go: up one dir, main page]

Skip to main content

Centralized Trajectory Tracking Controller for a Multi-robot System

  • Conference paper
  • First Online:
Applied Technologies (ICAT 2019)

Abstract

This work shows the development and implementation of a centralized trajectory tracking system for multi-robot systems, which is based on a kinematic trajectory controller for unicycle robots and subsequently transforming it to differential kinematics, a wireless network is also created for the communication of the master with the slave robots, additionally a method of prevention and avoidance of collisions between the robots is implemented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Antonelli, G., Arrichiello, F., Chiaverini, S.: Flocking for multi-robot systems via the null-space-based behavioral control. Swarm Intell. 4(1), 37 (2010)

    Article  Google Scholar 

  2. Arbito Chica, P.F.: Implementación de un Sistema de Posicionamiento Óptico para un Robot Móvil dentro de un Entorno de Trabajo. B.S. thesis, Universidad del Azuay (2019)

    Google Scholar 

  3. Burgard, W., Moors, M., Fox, D., Simmons, R., Thrun, S.: Collaborative multi-robot exploration. In: ICRA, pp. 476–481 (2000)

    Google Scholar 

  4. Faal, S.G., Kalat, S.T., Onal, C.D.: Decentralized obstacle avoidance in collective object manipulation. In: 2017 NASA/ESA Conference on Adaptive Hardware and Systems (AHS), pp. 133–138. IEEE (2017)

    Google Scholar 

  5. Gautam, A., Mohan, S.: A review of research in multi-robot systems. In: 2012 IEEE 7th International Conference on Industrial and Information Systems (ICIIS), pp. 1–5. IEEE (2012)

    Google Scholar 

  6. Guzmán, L.E.S., Villa, M.A.M., Vásquez, E.L.R.: Seguimiento de trayectorias con un robot móvil de configuración diferencial. Ingenierías USBMed 5(1), 26–34 (2014)

    Google Scholar 

  7. Khamis, A., Hussein, A., Elmogy, A.: Multi-robot task allocation: a review of the state-of-the-art. In: Koubâa, A., Martínez-de Dios, J.R. (eds.) Cooperative Robots and Sensor Networks 2015. SCI, vol. 604, pp. 31–51. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18299-5_2

    Chapter  Google Scholar 

  8. Kim, B., et al.: Multiple relative pose graphs for robust cooperative mapping. In: 2010 IEEE International Conference on Robotics and Automation, pp. 3185–3192. IEEE (2010)

    Google Scholar 

  9. Płaskonka, J.: The path following control of a unicycle based on the chained form of a kinematic model derived with respect to the serret-frenet frame. In: 2012 17th International Conference on Methods & Models in Automation & Robotics (MMAR), pp. 617–620a. IEEE (2012)

    Google Scholar 

  10. Soltero, D.E., Smith, S.L., Rus, D.: Collision avoidance for persistent monitoring in multi-robot systems with intersecting trajectories. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3645–3652. IEEE (2011)

    Google Scholar 

  11. Wang, Z., Schwager, M.: Kinematic multi-robot manipulation with no communication using force feedback. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 427–432. IEEE (2016)

    Google Scholar 

  12. Wilkie, D., Van Den Berg, J., Manocha, D.: Generalized velocity obstacles. In: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5573–5578. IEEE (2009)

    Google Scholar 

  13. Xie, D., Wang, S., Wang, Y.: Trajectory tracking control of differential drive mobile robot based on improved kinematics controller algorithm. In: 2018 Chinese Automation Congress (CAC), pp. 2675–2680. IEEE (2018)

    Google Scholar 

Download references

Acknowledgments

This research was funded by Project UDA 2019-0083, UDA 2019-0084 and UDA 2019-0230.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés Cabrera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Beltrán, C., Cabrera, A., Delgado, G., Iturralde, D. (2020). Centralized Trajectory Tracking Controller for a Multi-robot System. In: Botto-Tobar, M., Zambrano Vizuete, M., Torres-Carrión, P., Montes León, S., Pizarro Vásquez, G., Durakovic, B. (eds) Applied Technologies. ICAT 2019. Communications in Computer and Information Science, vol 1195. Springer, Cham. https://doi.org/10.1007/978-3-030-42531-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42531-9_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42530-2

  • Online ISBN: 978-3-030-42531-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics