Abstract
Image segmentation and registration are key tasks in image-guided therapy. End-to-end systems for image-guided therapy in use today perform segmentation, registration, as well as navigation and visualization. Segmentation involves identifying meaningful regions and structures within an image, such as normal anatomical tissue, pathology, or resection, for the purpose of planning, guiding, and measuring the outcome of a therapeutic procedure. Registration focuses on identifying a spatial mapping between two images of the same underlying tissue or patient, acquired from different imaging modalities or at different time points, fusing complementary information sources for planning and intra-procedural guidance. Intra-procedural navigation allows the movement of the patient and instruments during the procedure to be shown on the images, and the visualization updates the enhanced reality display to be consistent with the view of the patient that is visible to the physician. State-of-the-art image-guided therapy systems provide functionality to perform semiautomatic segmentation, a rigid registration with six degrees of freedom (and are in the early stages of providing limited nonrigid registration methods) to align the pre-procedural and intra-procedural imagery, and use of-the-shelf tracking hardware that uses either optical or electromagnetic sensors to track the motion of the patient during the intervention.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Grimson WEL, Kikinis R, Jolesz FA, Black PM. Image-guided surgery. Sci Am. 1999;280(6):62–9.
Kybic J. Bootstrap resampling for image registration uncertainty estimation without ground truth. IEEE Trans Image Process. 2010;19(1):64–73.
Pohl KM, Fisher J, Grimson WEL, Kikinis R, Wells WM. A Bayesian model for joint segmentation and registration. Neuroimage. 2006;31:228–39.
Ferrant M, Nabavi A, Macq B, Jolesz FA, Kikinis R, Warfield SK. Registration of 3-d intraoperative MR images of the brain using a finite-element biomechanical model. IEEE Trans Med Imaging. 2001;20(12):1384–97.
Kyriacou SK, Davatzikos C, Zinreich SJ, Bryan RN. Nonlinear elastic registration of brain images with tumor pathology using a biomechanical model. IEEE Trans Med Imaging. 1999;18(7):80–592.
Risholm P, Samset E, Florin-Talos I, Wells WM. A Non-rigid registration framework that accommodates tissue resection and retraction. Proc Inf Process Med Imaging (IPMI). 2009;21:447–58.
Rohr K, Stiehl HS, Sprengel R, Buzug TM, Weese J, Kuhn MH. Landmark-based elastic registration using approximating thin-plate splines. IEEE Trans Med Imaging. 2001;20(6):526–34.
Clatz O, Delingette H, Talos IF, et al. Robust nonrigid registration to capture brain shift from intraoperative MRI. IEEE Trans Med Imaging. 2005;24(11):1417–27.
Rohlfing T, Maurer JCR. Modeling liver motion and deformation during the respiratory cycle using intensity-based nonrigid registration of gated MR images. Med Phys. 2004;31:427–32.
Sra J, Krum D, Malloy A, Vass A, Belanger B, Soubelet S, Vaillant R, Akhtar M. Imaging registration of three-dimensional left atrial computed tomographic images with projection images obtained using fluoroscopy. Circulation. 2005;112:3763–8.
Khamene A, Bloch P, Wein W, Svatos M, Sauer F. Automatic registration of portal images and volumetric CT for patient positioning in radiation therapy. Med Image Anal. 2006;10:96–112.
Toews M, Wells WM. Bayesian registration via local image regions: information, selection and marginalization. Proc Inf Process Med Imaging (IPMI). 2009;21:435–46.
Wein W, Brunke S, Khamene A, Callstrom MR, Navab N. Automatic CT-ultrasound registration for diagnostic imaging and image-guided intervention. Med Image Anal. 2008;12:577–85.
Penney GP, Weese J, Little JA, Desmedt P, Hill DLG, Hawkes DJ. A comparison of similarity measures for use in 2-D-3-D medical image registration. IEEE Trans Med Imaging. 1998;17(4):586–95.
Periaswamy S, Hany F. Medical image registration with partial data. Med Image Anal. 2006;10:452–64.
Miga MI, Roberts DW, Kennedy FE, Platenik LA, Hartov A, Lunn KE. Modeling of retraction and resection for intraoperative updating of images. Neurosurgery. 2001;49(1):75–85.
Shen D, Davatzikos C. HAMMER: hierarchical attribute matching mechanism for elastic registration. IEEE Trans Med Imaging. 2002;21:1421–39.
Roche A, Pennec X, Malandain G, Ayache N. Rigid registration of 3D ultrasound with MR images: a new approach combining intensity and gradient information. IEEE Trans Med Imaging. 2001;20(10):1038–49.
Penney GP, Blackall JM, Hayashi D, Sabharwal T, Adam A, Hawkes DJ. Overview of an ultrasound to CT or MR registration system for use in thermal ablation of liver metastases. In: Proceedings of medical image understanding and analysis. The University of Birmingham; 2001. p. 65–8.
Roche A, Malandain G, Ayache N. Unifying maximum likelihood approaches in medical image registration. IJIST. 2000;11:71–80.
Roche A, Malandain G, Pennec X, Ayache N. The correlation ratio as a new similarity measure for multimodal image registration. In: International conference on medical image computing and computer assisted intervention (MICCAI). Berlin, Heidelberg: Springer; 1998. p. 1115–24.
Wells WM, Viola P, Atsumi H, Nakajima S, Kikinis R. Multi-modal volume registration by maximization of mutual information. Med Image Anal. 1996;1(1):35–51.
Studholme C, Hill DLG, Hawkes DJ. An overlap invariant entropy measure of 3D medical image alignment. Pattern Recognit. 1999;32(1):71–86.
King AP, Ma YL, Yao C, Christian J. Image-to-physical registration for image-guided interventions using 3-D ultrasound and an ultrasound imaging model. In: Proceedings of information processing in medical imaging (IPMI). Berlin, Heidelberg: Springer; 2009. p. 188–201.
Press WH, Teukolsky SA, Vetterling WT, Flannery BP. Numerical recipes in C. 2nd ed. Cambridge: Cambridge University Press; 1992.
Dempster A, Laird N, Rubin D. Maximum likelihood from incomplete data via the EM algorithm. J Royal Stat Soc. 1977;99(1):1–38.
Thévenaz P, Unser M. Optimization of mutual information for multiresolution image registration. IEEE Trans Med Imaging. 2000;9(12):2083–99.
Maintz JBA, Viergever MA. A survey of medical image registration. Med Image Anal. 1998;2(1):1–36.
Jaccard P. Étude comparative de la distribution florale dans une portion des Alpes et des Jura. Bulletin de la Société Vaudoise des Sciences Naturelles. 1901;37:547–79.
Dice LR. Measures of the amount of ecologic association between species. Ecology. 1945;26(3):297–302.
Archip N, Clatz O, Whalen S, Kacher D, Fedorov A, Kot A, Chrisochoides N, Jolesz F, Golby A, Black PM, Warfield SK. Non-rigid alignment of pre-operative MRI, fMRI and DT-MRI with intra-operative MRI for enhanced visualization and navigation in image-guided neurosurgery. Neuroimage. 2007;35(2):609–24.
Hausdorff F. Set theory, 2nd ed. Chelsea Pub. Co. New York; 1962.
Fitzpatrick JM, West JB. The distribution of target registration error in rigid body point-based registration. IEEE Trans Med Imaging. 2001;20(9):917–27.
Moghari M, Abolmaesumi P. Distribution of target registration error for anisotropic and inhomogenous fiducial localization error. IEEE Trans Med Imaging. 2009;28(6):799–813.
Rueckert D, Frangi AF, Schnabel JA. Automatic construction of 3-D statistical deformation models of the brain using nonrigid registration. IEEE Trans Med Imaging. 2003;22(8):1014–25.
Grimson WEL, Ettinger GJ, White SJ, Lozano-Perez T, Wells WM, Kikinis R. An automatic registration method for frameless stereotaxy, image guided surgery and enhanced reality visualization. IEEE Trans Med Imaging. 1996;15:129–40.
Shi J, Malik J. Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell (PAMI). 2000;22(8):888–905.
Li K, Wu X, Chen DZ, Sonka M. Efficient Optimal Surface Detection: Theory, Implementation and Experimental Validation. Proc SPIE Int Symp Med Imaging Image Process. 2004;5370:620–7.
Li K, Wu X, Chen DZ, Sonka M. Globally optimal segmentation of interacting surfaces with geometric constraints. Proc IEEE CS Conf Comput Vis Pattern Recognit (CVPR). 2004;1:394–9.
Li K, Wu X, Chen DZ, Sonka M. Optimal surface segmentation in volumetric images-A graph-theoretic approach. IEEE Trans Pattern Anal Mach Intell. 2006;28(1):119–34.
Boykov Y, Kolmogorov V. An experimental comparison of Min-Cut/Max-flow algorithms for energy minimization in vision. IEEE Trans Pattern Anal Mach Intell. 2004;26(9):1124–37.
Boykov Y, Jolly MP. Interactive graph cuts for optimal boundary and region segmentation of objects in n-d images. Proc Int Conf Comput Vis (ICCV). 2001;1:105–12.
Rother C, Kolmogorov V, Blake A. Grabcut – interactive foreground extraction using iterated graph cuts. In: Proceedings of ACM Siggraph. Los Angeles, California, USA; 2004.
Egger J, Bauer MHA, Kuhnt D, Kappus C, Carl B, Freisleben B, Nimsky C. A flexible semi-automatic approach for glioblastoma multiforme segmentation. In: Proceedings of international biosignal processing conference. Charité, Berlin. 2010. p. 4.
Egger J, Colen RR, Freisleben B, Nimsky C. Manual refinement system for graph-based segmentation results in the medical domain. In: Journal of medical systems. New York: Springer; 2011. p 11.
Fischer L. Using shape particle filters for robust medical image segmentation, technical report. Vienna University of Technology; 2009.
Gordon N, Salmond D, Smith A. Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEEE Proc Radar Signal Process. 1993;140(2):107–13.
Fearnhead P. Sequential monte carlo methods in Filter theory (Doctoral dissertation, University of Oxford). 2008.
Rathi Y, Vaswani N, Tannenbaum A, Yezzi A. Particle filtering for geometric active contours with application to tracking moving and deforming objects, computer vision and pattern recognition (CVPR). 2nd ed. New York: IEEE Press; 2005. p. 2–9.
Montemerlo M, Thrun S, Whittaker W. Conditional particle filters for simultaneous mobile robot localization and people-tracking. New York: IEEE International Conference on Robotics and Automation (ICRA); 2002. p. 7.
Vezhnevets V, Konouchine V. GrowCut – Interactive multi-label N-D image segmentation. In: Proc. Graphicon. Russia: Novosibirsk Akademgorodok; 2005. p. 150–6.
Slicer – GrowCutSegmentation. http://www.slicer.org/slicerWiki/index.php/Modules:GrowCutSegmentation-Documentation-3.6. Last access: 3-11-2012.
Egger J, Kappus C, Freisleben B, Nimsky C. A medical software system for volumetric analysis of cerebral pathologies in magnetic resonance imaging (MRI) data. In: Journal of medical systems. New York: Springer; 2011. p. 13.
Kleihues P, Louis DN, Scheithauer BW, et al. The WHO classification of tumors of the nervous system. J Neuropathol Exp Neurol. 2002;61(3):215–29.
Kortmann RD, Jeremic B, Weller M, Plasswilm L, Bamberg M. Radiochemotherapy of malignant gliom in adults. Clinical experiences. Strahlenther Onkol. 2003;179(4):219–32.
Abi-Said M, Fourney D, et al. A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection and survival. J Neurosurg. 2001;95:190–8.
Szwarc P, Kawa J, Bobek-Billewicz B, Pietka E. Segmentation of brain tumours in MR images using fuzzy clustering techniques. In: Proceedings of computer assisted radiology and surgery (CARS). Geneva; 2010.
Zou KH, Warfield SK, Bharatha A, et al. Statistical validation of image segmentation quality based on a spatial overlap index: scientific reports. Acad Radiol. 2004;11(2):178–89.
Angelini ED, et al. Glioma dynamics and computational models: a review of segmentation, registration, and in silico growth algorithms and their clinical applications. Curr Med Imaging Rev. 2007;3:262–76.
Gibbs P, Buckley DL, Blackband SJ, et al. Tumour volume determination from MR images by morphological segmentation. Phys Med Biol. 1996;41(11):2437–46.
Letteboer MMJ, Olsen OF, Dam EB, et al. Segmentation of tumors in magnetic resonance brain images using an interactive multiscale watershed algorithm. Acad Radiol. 2004;11:1125–38.
Droske M, Meyer B, Rumpf M, et al. An adaptive level set method for interactive segmentation of intracranial tumors. Neurol Res. 2005;27(4):363–70.
Clark M, Hall LO, Goldgof DB, et al. Automatic tumor segmentation using knowledge-based techniques. IEEE Trans Med Imaging (TMI). 1998;17(2):187–201.
Prastawa M, Bullitt E, Ho S, et al. A brain tumor segmentation framework based on outlier detection. Med Image Anal. 2004;8:275–83.
Sieg C, Handels H, Pöppl SJ. Automatic segmentation of contrast-enhanced brain tumors in multispectral MR-images with backpropagation-networks (in German). In: Bildverarbeitung für die Medizin (BVM). Berlin, Heidelberg: Springer Press; 2001. p. 347–51.
Egger J, Bauer MHA, Kuhnt D, Carl B, Kappus C, Freisleben B, Nimsky C. Nugget-cut: a segmentation scheme for spherically- and elliptically-shaped 3D objects. In: 32nd annual symposium of the German association for pattern recognition (DAGM), LNCS 6376. Berlin, Heidelberg: Springer Press; 2010. p. 383–92.
Egger J, et al. Pituitary adenoma segmentation. In: Proceedings of international biosignal processing conference. Charité, Berlin; 2010. p. 4.
Kapur T, Egger J, Damato A, Schmidt EJ, Viswanathan AN. 3-T MR-guided brachytherapy for gynecologic malignancies. Magn Reson Imaging. 2012;30(9):1279–90. doi: 10.1016/j.mri.2012.06.003. Epub 2012 Aug 13.
Egger J, Kapur T, et al. Square-cut: a segmentation algorithm on the basis of a rectangle shape. PLoS One. 2012;7(2):e31064.
Aumüller G. Prostate gland and seminal vesicle. (Bd, VII, 6. Tl.). Berlin/New York: Springer Press; 1979. p. 380. ISBN-13: 978–3540091912.
American Cancer Society, ACS: What is prostate cancer? http://www.cancer.org/cancer/prostatecancer/overviewguide/prostate-cancer-overview-what-is-prostate-cancer (2012). Last access: 3-11-2012.
Strassmann G, Olbert P, Hegele A, Richter D, Fokas E, Timmesfeld N, Hofmann R, Engenhart-Cabillic R. Advantage of robotic needle placement on a prostate model in HDR brachytherapy. Strahlenther Onkol. 2011;187(6):367–72. Epub 2011 May 17.
Peinemann F, Grouven U, Hemkens LG, Bartel C, Borchers H, Pinkawa M, Heidenreich A, Sauerland S. Low-dose rate brachytherapy for men with localized prostate cancer. Cochrane Database Syst Rev. 2011;(7):CD008871.
Rafiee A, Salimi A, Roosta AR. A novel prostate segmentation algorithm in TRUS images. World Acad Sci Eng Technol. 2008;45:120–124.
Pathak SD, Chalana V, Haynor DR, Kim Y. Edge-guided boundary delineation in prostate ultrasound images. IEEE Trans Med Imaging. 2000;19(12):1211–9.
Noble JA, Boukerroui D. Ultrasound image segmentation: a survey. IEEE Trans Med Imaging. 2006;25(8):987–1010.
Mahdavi SS, Chng N, Spadinger I, Morris WJ, Salcudean SE. Semi-automatic segmentation for prostate interventions. Med Image Anal. 2011;15:226–37.
Boukerroui D, Baskurt A, Noble J, Basset O. Segmentation of ultrasound images – multiresolution 2D and 3D algorithm based on global and local statistics. Pattern Recognit Lett. 2003;24(4–5):779–90.
Zaim A. An edge-based approach for segmentation of prostate ultrasound images using phase symmetry. In: ISCCSP. MALTA: St. Julians; 2008. p. 10–3.
Kass M, Witkin A, Terzopolous D. Snakes: active contour models. Int J Comput Vis (IJCV). 1988;1(4):321–31.
Terzopolous D, Witkin A, Kass M. Constraints on deformable models: recovering 3D shape and nongrid motion. Artif Intell. 1988;36:91–123.
Cootes TF, Taylor CJ. Active shape models – “Smart Snakes”. In: Proceedings of the British machine vision conference. London: Springer; 1992. p. 266–75.
Hodge AC, Fenster A, Downey DB, Ladak HM. Prostate boundary segmentation from ultrasound images using 2D active shape models: optimisation and extension to 3D. Comput Methods Programs Biomed. 2006;84(2–3):99–113.
Shen D, Zhan Y, Davatzikos C. Segmentation of prostate boundaries from ultrasound images using statistical shape model. IEEE Trans Med Imaging. 2003;22(4):539–51.
Kachouie NN, Fieguth P, Rahnamayan S. An elliptical level set method for automatic TRUS prostate image segmentation. In: Proceedings of the IEEE international symposium on signal processing and information technology. Canada: Vancouver; 2006. p. 191–6.
Gong L, Pathak SD, Haynor DR, Cho PS, Kim Y. Parametric shape modeling using deformable superellipses for prostate segmentation. IEEE Trans Med Imaging. 2004;23(3):340–9.
Tutar IB, Pathak SD, Gong L, Cho PS, Wallner K, Kim Y. Semiautomatic 3-D prostate segmentation from TRUS images using spherical harmonics. IEEE Trans Med Imaging. 2006;25(12):1645–54.
Peters TM, Cleary K, editors. Image guided interventions, technology and applications. New York: Springer; 2008.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer Science+Business Media New York
About this chapter
Cite this chapter
Kapur, T., Egger, J., Jayender, J., Toews, M., Wells, W.M. (2014). Registration and Segmentation for Image-Guided Therapy. In: Jolesz, F. (eds) Intraoperative Imaging and Image-Guided Therapy. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7657-3_5
Download citation
DOI: https://doi.org/10.1007/978-1-4614-7657-3_5
Published:
Publisher Name: Springer, New York, NY
Print ISBN: 978-1-4614-7656-6
Online ISBN: 978-1-4614-7657-3
eBook Packages: MedicineMedicine (R0)