Nothing Special   »   [go: up one dir, main page]

Skip to main content

Registration and Segmentation for Image-Guided Therapy

  • Chapter
  • First Online:
Intraoperative Imaging and Image-Guided Therapy

Abstract

Image segmentation and registration are key tasks in image-guided therapy. End-to-end systems for image-guided therapy in use today perform segmentation, registration, as well as navigation and visualization. Segmentation involves identifying meaningful regions and structures within an image, such as normal anatomical tissue, pathology, or resection, for the purpose of planning, guiding, and measuring the outcome of a therapeutic procedure. Registration focuses on identifying a spatial mapping between two images of the same underlying tissue or patient, acquired from different imaging modalities or at different time points, fusing complementary information sources for planning and intra-procedural guidance. Intra-procedural navigation allows the movement of the patient and instruments during the procedure to be shown on the images, and the visualization updates the enhanced reality display to be consistent with the view of the patient that is visible to the physician. State-of-the-art image-guided therapy systems provide functionality to perform semiautomatic segmentation, a rigid registration with six degrees of freedom (and are in the early stages of providing limited nonrigid registration methods) to align the pre-procedural and intra-procedural imagery, and use of-the-shelf tracking hardware that uses either optical or electromagnetic sensors to track the motion of the patient during the intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Grimson WEL, Kikinis R, Jolesz FA, Black PM. Image-guided surgery. Sci Am. 1999;280(6):62–9.

    Article  CAS  PubMed  Google Scholar 

  2. Kybic J. Bootstrap resampling for image registration uncertainty estimation without ground truth. IEEE Trans Image Process. 2010;19(1):64–73.

    Article  PubMed  Google Scholar 

  3. Pohl KM, Fisher J, Grimson WEL, Kikinis R, Wells WM. A Bayesian model for joint segmentation and registration. Neuroimage. 2006;31:228–39.

    Article  PubMed  Google Scholar 

  4. Ferrant M, Nabavi A, Macq B, Jolesz FA, Kikinis R, Warfield SK. Registration of 3-d intraoperative MR images of the brain using a finite-element biomechanical model. IEEE Trans Med Imaging. 2001;20(12):1384–97.

    Article  CAS  PubMed  Google Scholar 

  5. Kyriacou SK, Davatzikos C, Zinreich SJ, Bryan RN. Nonlinear elastic registration of brain images with tumor pathology using a biomechanical model. IEEE Trans Med Imaging. 1999;18(7):80–592.

    Article  Google Scholar 

  6. Risholm P, Samset E, Florin-Talos I, Wells WM. A Non-rigid registration framework that accommodates tissue resection and retraction. Proc Inf Process Med Imaging (IPMI). 2009;21:447–58.

    Google Scholar 

  7. Rohr K, Stiehl HS, Sprengel R, Buzug TM, Weese J, Kuhn MH. Landmark-based elastic registration using approximating thin-plate splines. IEEE Trans Med Imaging. 2001;20(6):526–34.

    Article  CAS  PubMed  Google Scholar 

  8. Clatz O, Delingette H, Talos IF, et al. Robust nonrigid registration to capture brain shift from intraoperative MRI. IEEE Trans Med Imaging. 2005;24(11):1417–27.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Rohlfing T, Maurer JCR. Modeling liver motion and deformation during the respiratory cycle using intensity-based nonrigid registration of gated MR images. Med Phys. 2004;31:427–32.

    Article  PubMed  Google Scholar 

  10. Sra J, Krum D, Malloy A, Vass A, Belanger B, Soubelet S, Vaillant R, Akhtar M. Imaging registration of three-dimensional left atrial computed tomographic images with projection images obtained using fluoroscopy. Circulation. 2005;112:3763–8.

    Article  PubMed  Google Scholar 

  11. Khamene A, Bloch P, Wein W, Svatos M, Sauer F. Automatic registration of portal images and volumetric CT for patient positioning in radiation therapy. Med Image Anal. 2006;10:96–112.

    Article  PubMed  Google Scholar 

  12. Toews M, Wells WM. Bayesian registration via local image regions: information, selection and marginalization. Proc Inf Process Med Imaging (IPMI). 2009;21:435–46.

    Google Scholar 

  13. Wein W, Brunke S, Khamene A, Callstrom MR, Navab N. Automatic CT-ultrasound registration for diagnostic imaging and image-guided intervention. Med Image Anal. 2008;12:577–85.

    Article  PubMed  Google Scholar 

  14. Penney GP, Weese J, Little JA, Desmedt P, Hill DLG, Hawkes DJ. A comparison of similarity measures for use in 2-D-3-D medical image registration. IEEE Trans Med Imaging. 1998;17(4):586–95.

    Article  CAS  PubMed  Google Scholar 

  15. Periaswamy S, Hany F. Medical image registration with partial data. Med Image Anal. 2006;10:452–64.

    Article  PubMed  Google Scholar 

  16. Miga MI, Roberts DW, Kennedy FE, Platenik LA, Hartov A, Lunn KE. Modeling of retraction and resection for intraoperative updating of images. Neurosurgery. 2001;49(1):75–85.

    CAS  PubMed  Google Scholar 

  17. Shen D, Davatzikos C. HAMMER: hierarchical attribute matching mechanism for elastic registration. IEEE Trans Med Imaging. 2002;21:1421–39.

    Article  PubMed  Google Scholar 

  18. Roche A, Pennec X, Malandain G, Ayache N. Rigid registration of 3D ultrasound with MR images: a new approach combining intensity and gradient information. IEEE Trans Med Imaging. 2001;20(10):1038–49.

    Article  CAS  PubMed  Google Scholar 

  19. Penney GP, Blackall JM, Hayashi D, Sabharwal T, Adam A, Hawkes DJ. Overview of an ultrasound to CT or MR registration system for use in thermal ablation of liver metastases. In: Proceedings of medical image understanding and analysis. The University of Birmingham; 2001. p. 65–8.

    Google Scholar 

  20. Roche A, Malandain G, Ayache N. Unifying maximum likelihood approaches in medical image registration. IJIST. 2000;11:71–80.

    Google Scholar 

  21. Roche A, Malandain G, Pennec X, Ayache N. The correlation ratio as a new similarity measure for multimodal image registration. In: International conference on medical image computing and computer assisted intervention (MICCAI). Berlin, Heidelberg: Springer; 1998. p. 1115–24.

    Chapter  Google Scholar 

  22. Wells WM, Viola P, Atsumi H, Nakajima S, Kikinis R. Multi-modal volume registration by maximization of mutual information. Med Image Anal. 1996;1(1):35–51.

    Article  PubMed  Google Scholar 

  23. Studholme C, Hill DLG, Hawkes DJ. An overlap invariant entropy measure of 3D medical image alignment. Pattern Recognit. 1999;32(1):71–86.

    Article  Google Scholar 

  24. King AP, Ma YL, Yao C, Christian J. Image-to-physical registration for image-guided interventions using 3-D ultrasound and an ultrasound imaging model. In: Proceedings of information processing in medical imaging (IPMI). Berlin, Heidelberg: Springer; 2009. p. 188–201.

    Chapter  Google Scholar 

  25. Press WH, Teukolsky SA, Vetterling WT, Flannery BP. Numerical recipes in C. 2nd ed. Cambridge: Cambridge University Press; 1992.

    Google Scholar 

  26. Dempster A, Laird N, Rubin D. Maximum likelihood from incomplete data via the EM algorithm. J Royal Stat Soc. 1977;99(1):1–38.

    Google Scholar 

  27. Thévenaz P, Unser M. Optimization of mutual information for multiresolution image registration. IEEE Trans Med Imaging. 2000;9(12):2083–99.

    Google Scholar 

  28. Maintz JBA, Viergever MA. A survey of medical image registration. Med Image Anal. 1998;2(1):1–36.

    Article  CAS  PubMed  Google Scholar 

  29. Jaccard P. Étude comparative de la distribution florale dans une portion des Alpes et des Jura. Bulletin de la Société Vaudoise des Sciences Naturelles. 1901;37:547–79.

    Google Scholar 

  30. Dice LR. Measures of the amount of ecologic association between species. Ecology. 1945;26(3):297–302.

    Article  Google Scholar 

  31. Archip N, Clatz O, Whalen S, Kacher D, Fedorov A, Kot A, Chrisochoides N, Jolesz F, Golby A, Black PM, Warfield SK. Non-rigid alignment of pre-operative MRI, fMRI and DT-MRI with intra-operative MRI for enhanced visualization and navigation in image-guided neurosurgery. Neuroimage. 2007;35(2):609–24.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Hausdorff F. Set theory, 2nd ed. Chelsea Pub. Co. New York; 1962.

    Google Scholar 

  33. Fitzpatrick JM, West JB. The distribution of target registration error in rigid body point-based registration. IEEE Trans Med Imaging. 2001;20(9):917–27.

    Article  CAS  PubMed  Google Scholar 

  34. Moghari M, Abolmaesumi P. Distribution of target registration error for anisotropic and inhomogenous fiducial localization error. IEEE Trans Med Imaging. 2009;28(6):799–813.

    Article  PubMed  Google Scholar 

  35. Rueckert D, Frangi AF, Schnabel JA. Automatic construction of 3-D statistical deformation models of the brain using nonrigid registration. IEEE Trans Med Imaging. 2003;22(8):1014–25.

    Article  PubMed  Google Scholar 

  36. Grimson WEL, Ettinger GJ, White SJ, Lozano-Perez T, Wells WM, Kikinis R. An automatic registration method for frameless stereotaxy, image guided surgery and enhanced reality visualization. IEEE Trans Med Imaging. 1996;15:129–40.

    Article  CAS  PubMed  Google Scholar 

  37. Shi J, Malik J. Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell (PAMI). 2000;22(8):888–905.

    Article  Google Scholar 

  38. Li K, Wu X, Chen DZ, Sonka M. Efficient Optimal Surface Detection: Theory, Implementation and Experimental Validation. Proc SPIE Int Symp Med Imaging Image Process. 2004;5370:620–7.

    Google Scholar 

  39. Li K, Wu X, Chen DZ, Sonka M. Globally optimal segmentation of interacting surfaces with geometric constraints. Proc IEEE CS Conf Comput Vis Pattern Recognit (CVPR). 2004;1:394–9.

    Google Scholar 

  40. Li K, Wu X, Chen DZ, Sonka M. Optimal surface segmentation in volumetric images-A graph-theoretic approach. IEEE Trans Pattern Anal Mach Intell. 2006;28(1):119–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Boykov Y, Kolmogorov V. An experimental comparison of Min-Cut/Max-flow algorithms for energy minimization in vision. IEEE Trans Pattern Anal Mach Intell. 2004;26(9):1124–37.

    Article  PubMed  Google Scholar 

  42. Boykov Y, Jolly MP. Interactive graph cuts for optimal boundary and region segmentation of objects in n-d images. Proc Int Conf Comput Vis (ICCV). 2001;1:105–12.

    Google Scholar 

  43. Rother C, Kolmogorov V, Blake A. Grabcut – interactive foreground extraction using iterated graph cuts. In: Proceedings of ACM Siggraph. Los Angeles, California, USA; 2004.

    Google Scholar 

  44. Egger J, Bauer MHA, Kuhnt D, Kappus C, Carl B, Freisleben B, Nimsky C. A flexible semi-automatic approach for glioblastoma multiforme segmentation. In: Proceedings of international biosignal processing conference. Charité, Berlin. 2010. p. 4.

    Google Scholar 

  45. Egger J, Colen RR, Freisleben B, Nimsky C. Manual refinement system for graph-based segmentation results in the medical domain. In: Journal of medical systems. New York: Springer; 2011. p 11.

    Google Scholar 

  46. Fischer L. Using shape particle filters for robust medical image segmentation, technical report. Vienna University of Technology; 2009.

    Google Scholar 

  47. Gordon N, Salmond D, Smith A. Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEEE Proc Radar Signal Process. 1993;140(2):107–13.

    Article  Google Scholar 

  48. Fearnhead P. Sequential monte carlo methods in Filter theory (Doctoral dissertation, University of Oxford). 2008.

    Google Scholar 

  49. Rathi Y, Vaswani N, Tannenbaum A, Yezzi A. Particle filtering for geometric active contours with application to tracking moving and deforming objects, computer vision and pattern recognition (CVPR). 2nd ed. New York: IEEE Press; 2005. p. 2–9.

    Google Scholar 

  50. Montemerlo M, Thrun S, Whittaker W. Conditional particle filters for simultaneous mobile robot localization and people-tracking. New York: IEEE International Conference on Robotics and Automation (ICRA); 2002. p. 7.

    Google Scholar 

  51. Vezhnevets V, Konouchine V. GrowCut – Interactive multi-label N-D image segmentation. In: Proc. Graphicon. Russia: Novosibirsk Akademgorodok; 2005. p. 150–6.

    Google Scholar 

  52. Slicer – GrowCutSegmentation. http://www.slicer.org/slicerWiki/index.php/Modules:GrowCutSegmentation-Documentation-3.6. Last access: 3-11-2012.

  53. Egger J, Kappus C, Freisleben B, Nimsky C. A medical software system for volumetric analysis of cerebral pathologies in magnetic resonance imaging (MRI) data. In: Journal of medical systems. New York: Springer; 2011. p. 13.

    Google Scholar 

  54. Kleihues P, Louis DN, Scheithauer BW, et al. The WHO classification of tumors of the nervous system. J Neuropathol Exp Neurol. 2002;61(3):215–29.

    PubMed  Google Scholar 

  55. Kortmann RD, Jeremic B, Weller M, Plasswilm L, Bamberg M. Radiochemotherapy of malignant gliom in adults. Clinical experiences. Strahlenther Onkol. 2003;179(4):219–32.

    Article  PubMed  Google Scholar 

  56. Abi-Said M, Fourney D, et al. A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection and survival. J Neurosurg. 2001;95:190–8.

    Article  PubMed  Google Scholar 

  57. Szwarc P, Kawa J, Bobek-Billewicz B, Pietka E. Segmentation of brain tumours in MR images using fuzzy clustering techniques. In: Proceedings of computer assisted radiology and surgery (CARS). Geneva; 2010.

    Google Scholar 

  58. Zou KH, Warfield SK, Bharatha A, et al. Statistical validation of image segmentation quality based on a spatial overlap index: scientific reports. Acad Radiol. 2004;11(2):178–89.

    Article  PubMed Central  PubMed  Google Scholar 

  59. Angelini ED, et al. Glioma dynamics and computational models: a review of segmentation, registration, and in silico growth algorithms and their clinical applications. Curr Med Imaging Rev. 2007;3:262–76.

    Article  Google Scholar 

  60. Gibbs P, Buckley DL, Blackband SJ, et al. Tumour volume determination from MR images by morphological segmentation. Phys Med Biol. 1996;41(11):2437–46.

    Article  CAS  PubMed  Google Scholar 

  61. Letteboer MMJ, Olsen OF, Dam EB, et al. Segmentation of tumors in magnetic resonance brain images using an interactive multiscale watershed algorithm. Acad Radiol. 2004;11:1125–38.

    Article  PubMed  Google Scholar 

  62. Droske M, Meyer B, Rumpf M, et al. An adaptive level set method for interactive segmentation of intracranial tumors. Neurol Res. 2005;27(4):363–70.

    Article  PubMed  Google Scholar 

  63. Clark M, Hall LO, Goldgof DB, et al. Automatic tumor segmentation using knowledge-based techniques. IEEE Trans Med Imaging (TMI). 1998;17(2):187–201.

    Article  CAS  Google Scholar 

  64. Prastawa M, Bullitt E, Ho S, et al. A brain tumor segmentation framework based on outlier detection. Med Image Anal. 2004;8:275–83.

    Article  PubMed  Google Scholar 

  65. Sieg C, Handels H, Pöppl SJ. Automatic segmentation of contrast-enhanced brain tumors in multispectral MR-images with backpropagation-networks (in German). In: Bildverarbeitung für die Medizin (BVM). Berlin, Heidelberg: Springer Press; 2001. p. 347–51.

    Google Scholar 

  66. Egger J, Bauer MHA, Kuhnt D, Carl B, Kappus C, Freisleben B, Nimsky C. Nugget-cut: a segmentation scheme for spherically- and elliptically-shaped 3D objects. In: 32nd annual symposium of the German association for pattern recognition (DAGM), LNCS 6376. Berlin, Heidelberg: Springer Press; 2010. p. 383–92.

    Google Scholar 

  67. Egger J, et al. Pituitary adenoma segmentation. In: Proceedings of international biosignal processing conference. Charité, Berlin; 2010. p. 4.

    Google Scholar 

  68. Kapur T, Egger J, Damato A, Schmidt EJ, Viswanathan AN. 3-T MR-guided brachytherapy for gynecologic malignancies. Magn Reson Imaging. 2012;30(9):1279–90. doi: 10.1016/j.mri.2012.06.003. Epub 2012 Aug 13.

  69. Egger J, Kapur T, et al. Square-cut: a segmentation algorithm on the basis of a rectangle shape. PLoS One. 2012;7(2):e31064.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Aumüller G. Prostate gland and seminal vesicle. (Bd, VII, 6. Tl.). Berlin/New York: Springer Press; 1979. p. 380. ISBN-13: 978–3540091912.

    Google Scholar 

  71. American Cancer Society, ACS: What is prostate cancer? http://www.cancer.org/cancer/prostatecancer/overviewguide/prostate-cancer-overview-what-is-prostate-cancer (2012). Last access: 3-11-2012.

  72. Strassmann G, Olbert P, Hegele A, Richter D, Fokas E, Timmesfeld N, Hofmann R, Engenhart-Cabillic R. Advantage of robotic needle placement on a prostate model in HDR brachytherapy. Strahlenther Onkol. 2011;187(6):367–72. Epub 2011 May 17.

    Article  PubMed  Google Scholar 

  73. Peinemann F, Grouven U, Hemkens LG, Bartel C, Borchers H, Pinkawa M, Heidenreich A, Sauerland S. Low-dose rate brachytherapy for men with localized prostate cancer. Cochrane Database Syst Rev. 2011;(7):CD008871.

    Google Scholar 

  74. Rafiee A, Salimi A, Roosta AR. A novel prostate segmentation algorithm in TRUS images. World Acad Sci Eng Technol. 2008;45:120–124.

    Google Scholar 

  75. Pathak SD, Chalana V, Haynor DR, Kim Y. Edge-guided boundary delineation in prostate ultrasound images. IEEE Trans Med Imaging. 2000;19(12):1211–9.

    Article  CAS  PubMed  Google Scholar 

  76. Noble JA, Boukerroui D. Ultrasound image segmentation: a survey. IEEE Trans Med Imaging. 2006;25(8):987–1010.

    Article  PubMed  Google Scholar 

  77. Mahdavi SS, Chng N, Spadinger I, Morris WJ, Salcudean SE. Semi-automatic segmentation for prostate interventions. Med Image Anal. 2011;15:226–37.

    Article  PubMed Central  PubMed  Google Scholar 

  78. Boukerroui D, Baskurt A, Noble J, Basset O. Segmentation of ultrasound images – multiresolution 2D and 3D algorithm based on global and local statistics. Pattern Recognit Lett. 2003;24(4–5):779–90.

    Article  Google Scholar 

  79. Zaim A. An edge-based approach for segmentation of prostate ultrasound images using phase symmetry. In: ISCCSP. MALTA: St. Julians; 2008. p. 10–3.

    Google Scholar 

  80. Kass M, Witkin A, Terzopolous D. Snakes: active contour models. Int J Comput Vis (IJCV). 1988;1(4):321–31.

    Article  Google Scholar 

  81. Terzopolous D, Witkin A, Kass M. Constraints on deformable models: recovering 3D shape and nongrid motion. Artif Intell. 1988;36:91–123.

    Article  Google Scholar 

  82. Cootes TF, Taylor CJ. Active shape models – “Smart Snakes”. In: Proceedings of the British machine vision conference. London: Springer; 1992. p. 266–75.

    Google Scholar 

  83. Hodge AC, Fenster A, Downey DB, Ladak HM. Prostate boundary segmentation from ultrasound images using 2D active shape models: optimisation and extension to 3D. Comput Methods Programs Biomed. 2006;84(2–3):99–113.

    Article  PubMed  Google Scholar 

  84. Shen D, Zhan Y, Davatzikos C. Segmentation of prostate boundaries from ultrasound images using statistical shape model. IEEE Trans Med Imaging. 2003;22(4):539–51.

    Article  PubMed  Google Scholar 

  85. Kachouie NN, Fieguth P, Rahnamayan S. An elliptical level set method for automatic TRUS prostate image segmentation. In: Proceedings of the IEEE international symposium on signal processing and information technology. Canada: Vancouver; 2006. p. 191–6.

    Google Scholar 

  86. Gong L, Pathak SD, Haynor DR, Cho PS, Kim Y. Parametric shape modeling using deformable superellipses for prostate segmentation. IEEE Trans Med Imaging. 2004;23(3):340–9.

    Article  PubMed  Google Scholar 

  87. Tutar IB, Pathak SD, Gong L, Cho PS, Wallner K, Kim Y. Semiautomatic 3-D prostate segmentation from TRUS images using spherical harmonics. IEEE Trans Med Imaging. 2006;25(12):1645–54.

    Article  PubMed  Google Scholar 

  88. Peters TM, Cleary K, editors. Image guided interventions, technology and applications. New York: Springer; 2008.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tina Kapur PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kapur, T., Egger, J., Jayender, J., Toews, M., Wells, W.M. (2014). Registration and Segmentation for Image-Guided Therapy. In: Jolesz, F. (eds) Intraoperative Imaging and Image-Guided Therapy. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7657-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7657-3_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7656-6

  • Online ISBN: 978-1-4614-7657-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics