Nothing Special   »   [go: up one dir, main page]

Skip to main content

Progress in Neurosurgical Robotics

  • Chapter
  • First Online:
Intraoperative Imaging and Image-Guided Therapy

Abstract

Over the past century, advances in neurosurgery have paralleled developments in technology. This trend began with novel surgical instrumentation and progressed to sophisticated techniques of lesion localization. Simultaneous advances in imaging and computer technologies enabled neuronavigation and the quantification of surgical space. Robotic systems couple the precision and accuracy of machines with the executive capabilities of an experienced surgeon.

Neurosurgical robotic systems are reviewed, and chronological accomplishments are described. The technical specifications and clinical contributions of each robot are summarized in a table. A case study of neuroArm, an MR-compatible image-guided surgical robot, is presented. This incorporates all stages of robot development, from conception and design to safety considerations, through clinical use and acceptance. The strengths and weaknesses of this contemporary system are discussed and analyzed.

Robotic systems are leading to a neurosurgical practice of minimalism and accuracy beyond that which is capable by the unaided human hand. Eventually, this will shift the paradigm of surgery from the organ to the cellular level. The integration of physical and imaging datasets at a computerized workstation offers the surgeon instantaneous access to critical surgical parameters. This technology has the potential to improve the performance of surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cushing H, Bovie WT. Electrosurgery as an aid to the removal of intracranial tumors, with a preliminary note on a new surgical-current generator by W.T. Bovie. Surg Gynecol Obstet. 1928;27:751–85.

    Google Scholar 

  2. Kriss TC, Kriss VM. History of the operating microscope: from magnifying glass to microneurosurgery. Neurosurgery. 1998;42(4):899–907.

    Article  CAS  PubMed  Google Scholar 

  3. Yasargil MG. Microsurgery applied to neurosurgery. New York: Academic; 1969.

    Google Scholar 

  4. Broca P. Nouvelle observation d’aphe’mie produite par une le´sion de la troisie`me circonvolution frontale. Bulletins de la Socie´te´ d’anatomie 2e serie. 1861;6:398–407.

    Google Scholar 

  5. Röntgen WC. Über eine neue Art von Strahlen. Sitzungsberichte der physikalisch-medizinischen Gesellschaft Wiirzburg. 1895;18(1):137–141.

    Google Scholar 

  6. Dandy WE. Roentgenography of the brain after injection of air into the spinal canal. Ann Surg. 1919;70:397.

    Article  CAS  PubMed  Google Scholar 

  7. Hounsfield GN. Computerized transverse axial scanning (tomography): part 1. Description of system. Br J Radiol. 1973;46:1016.

    Article  CAS  PubMed  Google Scholar 

  8. Lauterbur PC. Progress in n.m.r. zeugmatography imaging. Philos Trans R Soc Lond B Biol Sci. 1980;289(1037):483–7.

    Article  CAS  PubMed  Google Scholar 

  9. Mansfield P, Maudsley AA. Medical imaging by NMR. Br J Radiol. 1977;50:188–94.

    Article  CAS  PubMed  Google Scholar 

  10. Ogawa S, Tso-Ming L, Nayak AS, et al. Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn Reson Med. 1990;14:68–78.

    Article  CAS  PubMed  Google Scholar 

  11. Peeling J, Sutherland GR. High-resolution 1H NMR spectroscopy studies of extracts of human cerebral neoplasms. Magn Reson Med. 1992;24:123–36.

    Article  CAS  PubMed  Google Scholar 

  12. Lacy AM, Garcia-Valdecasas JC, Delgado S, et al. Laparoscopy-assisted colectomy versus open colectomy for treatment of non-metastatic colon cancer: a randomized trial. Lancet. 2002;359(9325):2224–9.

    Article  PubMed  Google Scholar 

  13. Liem MS, van der Graaf Y, van Steensel CJ, et al. Comparison of conventional anterior surgery and laparoscopic surgery for inguinal-hernia repair. N Engl J Med. 1997;336(22):1541–7.

    Article  CAS  PubMed  Google Scholar 

  14. Kelly PJ, Kall B, Goerss S. Stereotactic CT scanning for the biopsy of intracranial lesions and functional neurosurgery. Appl Neurophysiol. 1983;46:193–9.

    CAS  PubMed  Google Scholar 

  15. Kanner AA, Vogelbaum MA, Mayberg MR, et al. Intracranial navigation by using low-field intraoperative magnetic resonance imaging: preliminary experience. J Neurosurg. 2002;97:1115–24.

    Article  PubMed  Google Scholar 

  16. Chandler WF, Knake JE, McGillicuddy JE, et al. Intraoperative use of real-time ultrasonography in neurosurgery. J Neurosurg. 1982;57(2):157–63.

    Article  CAS  PubMed  Google Scholar 

  17. Lunsford LD. A dedicated CT system for the stereotactic operating room. Appl Neurophysiol. 1982;45(4–5):374–8.

    CAS  PubMed  Google Scholar 

  18. Black PM, Moriarty T, Alexander 3rd E, et al. Development and implementation of intraoperative magnetic resonance imaging and its neurosurgical applications. Neurosurgery. 1997;41(4):831–5.

    Article  CAS  PubMed  Google Scholar 

  19. Sutherland GR, Kaibara T, Louw D, et al. A mobile high-field magnetic resonance system for neurosurgery. J Neurosurg. 1999;91(5):804–13.

    Article  CAS  PubMed  Google Scholar 

  20. Lang MJ, Sutherland GR. Informatic surgery: the union of surgeon and machine. World Neurosurg. 2010;74(1):118–20.

    Article  PubMed  Google Scholar 

  21. Kwoh YS, Hou J, Jonckheere EA, et al. A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery. IEEE Trans Biomed Eng. 1988;35(2):153–60.

    Article  CAS  PubMed  Google Scholar 

  22. Benabid AL, Cinquin P, Lavaile S, et al. Computer-driven robot for stereotactic surgery connected to CT scan and magnetic resonance imaging: technological design and preliminary results. Appl Neurophysiol. 1987;50(1–6):153–4.

    CAS  PubMed  Google Scholar 

  23. Drake JM, Joy M, Goldenberg A, et al. Computer- and robot-assisted resection of thalamic astrocytomas in children. Neurosurgery. 1991;29(1):27–33.

    Article  CAS  PubMed  Google Scholar 

  24. Fankhauser H, Glauser D, Flury P, et al. Robot for CT-guided stereotactic neurosurgery. Stereotact Funct Neurosurg. 1994;63(1–4):93–8.

    Article  CAS  PubMed  Google Scholar 

  25. Le Roux PD, Das H, Esquenazi S, et al. Robot-assisted microsurgery: a feasibility study in the rat. Neurosurgery. 2001;48(3):584–9.

    Article  PubMed  Google Scholar 

  26. Taylor R, Jensen P, Whitcomb L, et al. A steady-hand robotic system for microsurgical augmentation. Int J Robot Res. 1999;18(12):1201–10.

    Article  Google Scholar 

  27. Chinzei K, Miller K. Towards MRI guided surgical manipulator. Med Sci Monit. 2001;7(1):153–63.

    CAS  PubMed  Google Scholar 

  28. Hongo K, Kobayashi S, Kakizawa Y, et al. NeuRobot: telecontrolled micromanipulator system for minimally invasive microneurosurgery-preliminary results. Neurosurgery. 2002;51(4):985–8.

    PubMed  Google Scholar 

  29. Zimmermann M, Krishnan R, Raabe A, et al. Robot-assisted navigated endoscopic ventriculostomy: implementation of a new technology and first clinical results. Acta Neurochir (Wien). 2004;146(7):697–704.

    Article  CAS  Google Scholar 

  30. Varma TR, Eldridge PR, Forster A, et al. Use of the NeuroMate stereotactic robot in frameless mode for movement disorder surgery. Stereotact Funct Neurosurg. 2003;80(1–4):132–5.

    Article  CAS  PubMed  Google Scholar 

  31. Eljamel MS. Robotic application in epilepsy surgery. Int J Med Robot. 2006;2:233–7.

    CAS  PubMed  Google Scholar 

  32. Chan F, Kassim I, Lo C, et al. Image-guided robotic neurosurgery – an in vitro and in vivo point accuracy evaluation experimental study. Surg Neurol. 2009;71(6):640–7.

    Article  PubMed  Google Scholar 

  33. Cleary K, Watson V, Lindisch D, et al. Precision placement of instruments for minimally invasive procedures using a “needle driver” robot. Int J Med Robot. 2005;1(2):40–7.

    CAS  PubMed  Google Scholar 

  34. Lieberman IH, Togawa D, Kayanja MM, et al. Bone-mounted miniature robotic guidance for pedicle screw and translaminar facet screw placement: part I – technical development and a test case result. Neurosurgery. 2006;59(3):641–50.

    Article  PubMed  Google Scholar 

  35. Louw DF, Fielding T, McBeth PB, et al. Surgical robotics: a review and neurosurgical prototype development. Neurosurgery. 2004;54(3):525–36; discussion 536–7.

    Article  PubMed  Google Scholar 

  36. Sutherland GR, Latour I, Greer AD. Integrating an image-guided robot with intraoperative MRI: a review of the design and construction of neuroArm. IEEE Eng Med Biol Mag. 2008;27(3):59–65.

    Article  PubMed  Google Scholar 

  37. Sutherland GR, Latour I, Greer AD, et al. An image-guided magnetic resonance-compatible surgical robot. Neurosurgery. 2008;62(2):286–92; discussion 292–3.

    Article  PubMed  Google Scholar 

  38. Greer AD, Newhook P, Sutherland GR. Human-machine interface for robotic surgery and stereotaxy. IEEE/ASME Trans Mech. 2008;13(3):355–61.

    Article  Google Scholar 

  39. Pandya S, Motkoski JW, Serrano-Almeida C, et al. Advancing neurosurgery with image-guided robotics. J Neurosurg. 2009;111(6):1141–9.

    Article  PubMed  Google Scholar 

  40. Glauser D, Fankhauser H, Epitaux M, et al. Neurosurgical robot Minerva: first results and current developments. J Image Guid Surg. 1995;1(5):266–72.

    Article  CAS  PubMed  Google Scholar 

  41. Hefti J-L, Epitaux M, Glauser D, et al. Robotic three-dimensional positioning of a stimulation electrode in the brain. Comput Aided Surg. 1998;3:1–10.

    Article  CAS  PubMed  Google Scholar 

  42. Fankhauser H, Glauser D, Flury P, et al. Robot for CT-guided stereotactic neurosurgery. Stereotact Funct Neurosurg. 1994;63:93–98.

    Article  CAS  PubMed  Google Scholar 

  43. Adler JR Jr., Chang SD, Murphy MJ, et al. The Cyberknife: A frameless robotic system for radiosurgery. Stereotact Funct Neurosurg. 1997;69:124–8.

    Article  PubMed  Google Scholar 

  44. Das H, Zak H, Johnson J, et al. Evaluation of a telerobotic system to assist surgeons in microsurgery. Comput Aided Surg. 1999;4(1):15–25.

    Article  CAS  PubMed  Google Scholar 

  45. Chinzei K, Warfield SK, Hata N, et al. Planning, simulation and assistance with intraoperative MRI. Minim Invasive Ther Allied Technol. 2003;12(1-2):59–64.

    PubMed  Google Scholar 

  46. Zimmermann M, Krishnan R, Raabe A, Seifert V. Robot-assisted navigated neuroendoscopy. Neurosurgery. 2002;51(6):1446–52.

    PubMed  Google Scholar 

  47. Nimsky Ch, Rachinger J, Iro H, et al. Adaptation of a hexapod-based robotic system for extended endoscope-assisted transsphenoidal skull base surgery. Minim Invasive Neurosurg. 2004;47(1):41–6.

    Article  Google Scholar 

  48. Li QH, Zamorano L, Pandya A, et al. The application accuracy of the NeuroMate robot-A quantitative comparison with frameless and frame-based surgical localization systems. Comput Aided Surg. 2002;7(2):90–8.

    PubMed  Google Scholar 

  49. Varma TR, Eldridge P. Use of the NeuroMate stereotactic robot in a frameless mode for functional neurosurgery. Int J Med Robot Comp. 2006;2(2):107–13.

    CAS  Google Scholar 

  50. Xia T, Baird C, Jallo G, et al. An integrated system for planning, navigation and robotic assistance for skull base surgery. Int J Med Robot Comp. 2008;4(4):321–30.

    Google Scholar 

  51. Goto T, Hongo K, Kakizawa Y, et al. Clinical application of robotic telemanipulation system in neurosurgery: case report. J Neurosurg. 2003;99(6):1082–4.

    Article  PubMed  Google Scholar 

  52. Hongo K, Goto T, Miyahara T, et al. Telecontrolled micromanipulator system (NeuRobot) for minimally invasive neurosurgery. Acta Neurochirurgica Supplement. 2006;98:63.

    Article  CAS  PubMed  Google Scholar 

  53. Cleary K, Stoianovici D, Patriciu A, et al. Robotically assisted nerve and facet blocks: a cadaveric study. Acad Radiol. 2002;9(7):821–5.

    Article  PubMed  Google Scholar 

  54. Sukovich W, Brink-Danan S, Hardenbrook M. Miniature robotic guidance for pedicle screw placement in posterior spinal fusion: early clinical experience with the SpineAssist®. Int J Med Robot Comp. 2006;2(2):114–22.

    CAS  Google Scholar 

  55. Barzilay Y, Liebergall M, Fridlander A, et al. Miniature robotic guidance for spine surgery—introduction of a novel system and analysis of challenges encountered during the clinical development phase at two spine centres. Int J Med Robot Comp. 2006;2(2):146–53.

    CAS  Google Scholar 

Download references

Acknowledgement

Supported by grants from the Canada Foundation for Innovation, Western Economic Diversification Canada, Alberta Advanced Education and Technology, Alberta Heritage Foundation for Medical Research and the Canadian Institute for Health Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Garnette R. Sutherland MD, FRCS(C) .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Motkoski, J.W., Sutherland, G.R. (2014). Progress in Neurosurgical Robotics. In: Jolesz, F. (eds) Intraoperative Imaging and Image-Guided Therapy. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7657-3_46

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7657-3_46

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7656-6

  • Online ISBN: 978-1-4614-7657-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics