Abstract
Over the last two and a half decades we have observed astonishing progress in the field of nanotechnology. This progress is largely due to the invention of Scanning Tunneling Microscope (STM) and Atomic Force Microscope (AFM) in the 1980s. Central to the operation of AFM and STM is a nanopositioning system that moves a sample or a probe, with extremely high precision, up to a fraction of an Angstrom, in certain applications. This note concentrates on the fundamental role of feedback, and the need for model-based control design methods in improving accuracy and speed of operation of nanopositioning systems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Bibliography
Cherubini G, Chung CC, Messner WC, Moheimani SOR (2012) Control methods in data-storage systems. IEEE Trans Control Syst Technol 20(2):296–322
Clayton GM, Tien S, Leang KK, Zou Q, Devasia S (2009) A review of feedforward control approaches in nanopositioning for high-speed SPM. J Dyn Syst Meas Control Trans ASME 131(6):1–19
Croft D, Shed G, Devasia S (2001) Creep, hysteresis, and vibration compensation for piezoactuators: atomic force microscopy application. ASME J Dyn Syst Control 123(1):35–43
Devasia S, Eleftheriou E, Moheimani SOR (2007) A survey of control issues in nanopositioning. IEEE Trans Control Syst Technol 15(5):802–823
Gao W, Hocken RJ, Patten JA, Lovingood J, Lucca DA (2000) Construction and testing of a nanomachining instrument. Precis Eng 24(4):320–328
Krogmann D (1999) Image multiplexing system on the base of piezoelectrically driven silicon microlens arrays. In: Proceedings of the 3rd international conference on micro opto electro mechanical systems (MOEMS), Mainz, pp 178–185
Meldrum DR, Pence WH, Moody SE, Cunningham DL, Holl M, Wiktor PJ, Saini M, Moore MP, Jang L, Kidd M, Fisher C, Cookson A (2001) Automated, integrated modules for fluid handling, thermal cycling and purification of DNA samples for high throughput sequencing and analysis. In: IEEE/ASME international conference on advanced intelligent mechatronics, AIM, Como, vol 2, pp 1211–1219
Meyer E, Hug HJ, Bennewitz R (2004) Scanning probe microscopy. Springer, Heidelberg
Pantazi A, Sebastian A, Antonakopoulos TA, Bachtold P, Bonaccio AR, Bonan J, Cherubini G, Despont M, DiPietro RA, Drechsler U, DurIg U, Gotsmann B, Haberle W, Hagleitner C, Hedrick JL, Jubin D, Knoll A, Lantz MA, Pentarakis J, Pozidis H, Pratt RC, Rothuizen H, Stutz R, Varsamou M, Weismann D, Eleftheriou E (2008) Probe-based ultrahigh-density storage technology. IBM J Res Dev 52(4–5):493–511
Salapaka S (2003) Control of the nanopositioning devices. In: Proceedings of the IEEE conference on decision and control, Maui
Sebastian A, Pantazi A, Moheimani SOR, Pozidis H, Eleftheriou E (2008a) Achieving sub-nanometer precision in a MEMS storage device during self-servo write process. IEEE Trans Nanotechnol 7(5):586–595. doi:10.1109/TNANO.2008.926441
Sebastian A, Pantazi A, Pozidis H, Eleftheriou E (2008b) Nanopositioning for probe-based data storage [applications of control]. IEEE Control Syst Mag 28(4):26–35
Verma S, Kim W, Shakir H (2005) Multi-axis maglev nanopositioner for precision manufacturing and manipulation applications. IEEE Trans Ind Appl 41(5):1159–1167
Vettiger P, Cross G, Despont M, Drechsler U, Durig U, Gotsmann B, Haberle W, Lantz MA, Rothuizen HE, Stutz R, Binnig GK (2002) The “millipede”-nanotechnology entering data storage. IEEE Trans Nanotechnol 1(1):39–54
Whitesides GM, Christopher Love J (2001) The art of building small. Sci Am 285(3):38–47
Yong YK, Aphale S, Moheimani SOR (2009) Design, identification and control of a flexure-based XY stage for fast nanoscale positioning. IEEE Trans Nanotechnol 8(1):46–54
Yong YK, Moheimani SOR, Kenton BJ, Leang KK (2012) Invited review article: high-speed flexure-guided nanopositioning: mechanical design and control issues. Rev Sci Instrum 83(12):121101
Yong YK, Bhikkaji B, Moheimani SOR (2013) Design, modeling and FPAA-based control of a high-speed atomic force microscope nanopositioner. IEEE/ASME Trans Mechatron 18(3):1060–1071. doi:10.1109/TMECH.2012.2194161
Zou Q, Leang KK, Sadoun E, Reed MJ, Devasia S (2004) Control issues in high-speed AFM for biological applications: collagen imaging example. Asian J Control Spec Issue Adv Nanotechnol Control 6(2):164–178
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer-Verlag London
About this entry
Cite this entry
Moheimani, S.O.R. (2015). Control for High-Speed Nanopositioning. In: Baillieul, J., Samad, T. (eds) Encyclopedia of Systems and Control. Springer, London. https://doi.org/10.1007/978-1-4471-5058-9_184
Download citation
DOI: https://doi.org/10.1007/978-1-4471-5058-9_184
Published:
Publisher Name: Springer, London
Print ISBN: 978-1-4471-5057-2
Online ISBN: 978-1-4471-5058-9
eBook Packages: EngineeringReference Module Computer Science and Engineering