Abstract
Spatial technologies forge massive datasets fast and constantly. This gigantic dataset consists of the time series forecasting or spatial interpolation issue to time and space dimensions. Spatiotemporal data can be further modeled with different statistical, physical, and artificial intelligence (AI) methods, but due to handling uncertainty in spatiotemporal data is the major challenge in front of these models. The chapter’s fundamental motivation is to analyze the challenges and strategies for virtually managing uncertainty in spatiotemporal data. The primary difficulties behind the data are high-level feature extractions and long-term memory modeling. These data are technically intensive and result in inadequate model configuration and parameterization. Most AI models oriented with these data need more interpretability and essentially require elaborate training but can model complex nonlinear and Non-Gaussian problems. Predictive uncertainty comes from data and models, which a probability distribution and Bayesian inference could estimate. Therefore, this chapter addresses the detailed strategies for handling uncertainty, including algorithms and approaches for data management. The structure of uncertain data management requires exploring the components of uncertainty management, including data structures and relevant algorithms. This chapter also concentrates on the distinct challenges of handling uncertainty in moving object data and provides strategies for addressing these challenges. Another motivation behind this chapter is to study different domains where spatiotemporal data is encountered on an enormous scale and provides a close look at the computational and I/O requirements of several analysis algorithms for such data. Handling uncertainty in spatiotemporal data is a hot topic in the research area. This chapter will provide the researchers extensive and revised literature review and future research direction, which will undoubtedly be valuable for addressing the challenges in addressing uncertainty in spatiotemporal data in diverse applications. The view inside the chapter provides state-of-the-art advances in spatiotemporal data handling and highlights new generation necessities to solve uncertainty in spatiotemporal data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
K. L. R. &. R. A. (. N. Toyama, "Geographic location tags on digital images," in Eleventh ACM international conference on Multimedia, Redmond WA,, 2003.
J. S. Y. M. H. J. &. Z. X. Tang, "Estimating the most likely space–time paths, dwell times and path uncertainties from vehicle trajectory data: A time geographic method," Transportation Research Part C: Emerging Technologies, vol. 66, pp. 176-194, 2016.
A. e. a. Züfle, "Handling uncertainty in geo-spatial data.," in IEEE 33rd International Conference on Data Engineering (ICDE), San Diego, CA, USA, 2017.
Langseth, H., & Portinale, L. (2007). Bayesian networks in reliability. Reliability Engineering & System Safety, 92(1), 92-108.
Kosko, B., & Isaka, S. (1993). Fuzzy logic. Scientific American, 269(1), 76-81.
Pelekis, N., Theodoulidis, B., Kopanakis, I., & Theodoridis, Y. (2004). Literature review of spatio-temporal database models. The Knowledge Engineering Review, 19(3), 235-274.
Chen, L. J., Hsu, W., Cheng, M., & Lee, H. C. (2016, June). LASS: A location-aware sensing system for participatory PM2. 5 monitoring. In Proceedings of the 14th Annual International Conference on Mobile Systems, Applications, and Services Companion (pp. 98-98).
Fuhr, N. (1992). Probabilistic models in information retrieval. The computer journal, 35(3), 243-255.
Landmann, M., Kaske, M., & Thoma, R. S. (2011). Impact of incomplete and inaccurate data models on high resolution parameter estimation in multidimensional channel sounding. IEEE Transactions on Antennas and Propagation, 60(2), 557-573.
Aggarwal, C. C., & Yu, P. S. (2008, April). Outlier detection with uncertain data. In Proceedings of the 2008 SIAM International Conference on Data Mining (pp. 483-493). Society for Industrial and Applied Mathematics.
Asariotis, R., & Benamara, H. (Eds.). (2012). Maritime transport and the climate change challenge. Routledge.
Morozov, A., & Janschek, K. (2014). Probabilistic error propagation model for mechatronic systems. Mechatronics, 24(8), 1189-1202.
Heuvelink, G. B., & Burrough, P. A. (2002). Developments in statistical approaches to spatial uncertainty and its propagation. International Journal of Geographical Information Science, 16(2), 111-113.
Rolke, B., & Hofmann, P. (2007). Temporal uncertainty degrades perceptual processing. Psychonomic bulletin & review, 14(3), 522-526.
Meyer, V. R. (2007). Measurement uncertainty. Journal of Chromatography A, 1158(1-2), 15-24.
Guo, M., & Murphy, R. J. (2012). LCA data quality: sensitivity and uncertainty analysis. Science of the total environment, 435, 230-243.
Barbará, D., Garcia-Molina, H., & Porter, D. (1992). The management of probabilistic data. IEEE Transactions on knowledge and data engineering, 4(5), 487-502.
Sen, P., & Deshpande, A. (2006, April). Representing and querying correlated tuples in probabilistic databases. In 2007 IEEE 23rd international conference on data engineering (pp. 596-605). IEEE.
Costa, P. C. G., Carvalho, R. N., Laskey, K. B., & Park, C. Y. (2011, July). Evaluating uncertainty representation and reasoning in HLF systems. In 14th International Conference on Information Fusion (pp. 1-8). IEEE.
Abiteboul, S., Quass, D., McHugh, J., Widom, J., & Wiener, J. L. (1997). The Lorel query language for semistructured data. International journal on digital libraries, 1, 68-88.
Cusumano-Towner, M., & Mansinghka, V. K. (2017). AIDE: An algorithm for measuring the accuracy of probabilistic inference algorithms. Advances in Neural Information Processing Systems, 30.
Dong, X. L., Halevy, A., & Yu, C. (2009). Data integration with uncertainty. The VLDB Journal, 18, 469-500.
Dalvi, N., & Suciu, D. (2007, June). Management of probabilistic data: foundations and challenges. In Proceedings of the twenty-sixth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems (pp. 1-12).
Allen, J. F. (1981, August). An Interval-Based Representation of Temporal Knowledge. In IJCAI (Vol. 81, pp. 221-226).
Ayyub, B. M., & Klir, G. J. (2006). Uncertainty modeling and analysis in engineering and the sciences. CRC Press.
Markov, S. M. (1992). Extended interval arithmetic involving infinite intervals. Math. Balkanika, New Ser, 6, 269-304.
Tu, S. W., Tennakoon, L., O’Connor, M., Shankar, R., & Das, A. (2008). Using an integrated ontology and information model for querying and reasoning about phenotypes: the case of autism. In AMIA Annual Symposium Proceedings (Vol. 2008, p. 727). American Medical Informatics Association.
Walster, G. W. (2005). The use and implementation of interval data types. In Accuracy and Reliability in Scientific Computing (pp. 173-194). Society for Industrial and Applied Mathematics.
Rondeau, L., Ruelas, R., Levrat, L., & Lamotte, M. (1997). A defuzzification method respecting the fuzzification. Fuzzy sets and systems, 86(3), 311-320.
Selvachandran, G., & Singh, P. K. (2018). Interval-valued complex fuzzy soft set and its application. International Journal for Uncertainty Quantification, 8(2).
Friedman, N., & Koller, D. (2003). Being Bayesian about network structure. A Bayesian approach to structure discovery in Bayesian networks. Machine learning, 50, 95-125.
Ding, J., & Rebai, A. (2010). Probabilistic inferences in Bayesian networks. Bayesian Network, 39-53.
Einhorn, H. J., & Hogarth, R. M. (1985). Ambiguity and uncertainty in probabilistic inference. Psychological review, 92(4), 433.
Freeling, A. N. (1981). Alternate theories of belief and the implications for incoherence, reconciliation, and sensitivity analysis. DECISION SCIENCE CONSORTIUM INC FALLS CHURCH VA.
Hanea, A., Napoles, O. M., & Ababei, D. (2015). Non-parametric Bayesian networks: improving theory and reviewing applications. Reliability Engineering & System Safety, 144, 265-284.
Singpurwalla, N. D., & Booker, J. M. (2004). Membership functions and probability measures of fuzzy sets. Journal of the American Statistical Association, 99(467), 867-877.
Zimmermann, H. J. (2010). Fuzzy set theory. Wiley interdisciplinary reviews: computational statistics, 2(3), 317-332.
Olken, F., & Rotem, D. (1995). Random sampling from databases: a survey. Statistics and Computing, 5, 25-42.
Stipčević, M., & Koç, Ç. K. (2014). True random number generators. Open Problems in Mathematics and Computational Science, 275-315.
Cooke, P. (1979). Statistical inference for bounds of random variables. Biometrika, 66(2), 367-374.
Hammersley, J. (2013). Monte carlo methods. Springer Science & Business Media.
Ferson, S. (1996). What Monte Carlo methods cannot do. Human and Ecological Risk Assessment: An International Journal, 2(4), 990-1007.
Kroese, D. P., Brereton, T., Taimre, T., & Botev, Z. I. (2014). Why the Monte Carlo method is so important today. Wiley Interdisciplinary Reviews: Computational Statistics, 6(6), 386-392.
Rochman, D., van der Marck, S. C., Koning, A. J., Sjöstrand, H., & Zwermann, W. (2014). Uncertainty propagation with fast Monte Carlo techniques. Nuclear Data Sheets, 118, 367-369.
Lee, S. H., & Chen, W. (2009). A comparative study of uncertainty propagation methods for black-box-type problems. Structural and multidisciplinary optimization, 37, 239-253.
Barbarosoǧlu, G., & Arda, Y. (2004). A two-stage stochastic programming framework for transportation planning in disaster response. Journal of the operational research society, 55(1), 43-53.
Vayanos, P., Kuhn, D., & Rustem, B. (2011, December). Decision rules for information discovery in multi-stage stochastic programming. In 2011 50th IEEE Conference on Decision and Control and European Control Conference (pp. 7368-7373). IEEE.
Wolfson, O., Xu, B., Chamberlain, S., & Jiang, L. (1998, July). Moving objects databases: Issues and solutions. In Proceedings. Tenth International Conference on Scientific and Statistical Database Management (Cat. No. 98TB100243) (pp. 111-122). IEEE.
Hu, X., Han, Y., & Geng, Z. (2021). Novel trajectory representation learning method and its application to trajectory-user linking. IEEE Transactions on Instrumentation and Measurement, 70, 1-9.
Sakr, S., & Al-Naymat, G. (2010). Graph indexing and querying: a review. International Journal of Web Information Systems, 6(2), 101-120.
Kellaris, G., Pelekis, N., & Theodoridis, Y. (2009). Trajectory compression under network constraints. In Advances in Spatial and Temporal Databases: 11th International Symposium, SSTD 2009 Aalborg, Denmark, July 8-10, 2009 Proceedings 11 (pp. 392-398). Springer Berlin Heidelberg.
Waljee, A. K., Higgins, P. D., & Singal, A. G. (2014). A primer on predictive models. Clinical and translational gastroenterology, 5(1), e44.
Atluri, G., Karpatne, A., & Kumar, V. (2018). Spatio-temporal data mining: A survey of problems and methods. ACM Computing Surveys (CSUR), 51(4), 1-41.
Chanal, P. M., & Kakkasageri, M. S. (2020). Security and privacy in IOT: a survey. Wireless Personal Communications, 115, 1667-1693.
Koliousis, A., Weidlich, M., Castro Fernandez, R., Wolf, A. L., Costa, P., & Pietzuch, P. (2016, June). Saber: Window-based hybrid stream processing for heterogeneous architectures. In Proceedings of the 2016 International Conference on Management of Data (pp. 555-569).
Radaideh, M. I., Borowiec, K., & Kozlowski, T. (2019). Integrated framework for model assessment and advanced uncertainty quantification of nuclear computer codes under bayesian statistics. Reliability Engineering & System Safety, 189, 357-377.
Hullman, J., Qiao, X., Correll, M., Kale, A., & Kay, M. (2018). In pursuit of error: A survey of uncertainty visualization evaluation. IEEE transactions on visualization and computer graphics, 25(1), 903-913.
Schneider, M., & Kandel, A. (1994). On uncertainty management in fuzzy inference procedures. Information sciences, 79(3-4), 181-190.
Hammer, B., & Villmann, T. (2007, April). How to process uncertainty in machine learning? In ESANN (pp. 79-90).
Potter, K., Wilson, A., Bremer, P. T., Williams, D., Doutriaux, C., Pascucci, V., & Johhson, C. (2009, July). Visualization of uncertainty and ensemble data: Exploration of climate modeling and weather forecast data with integrated ViSUS-CDAT systems. In Journal of Physics: Conference Series (Vol. 180, No. 1, p. 012089). IOP Publishing.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this chapter
Cite this chapter
Pawar, S.D., Pawar, V.S., Abimannan, S. (2024). Handling Uncertainty in Spatiotemporal Data. In: A, J., Abimannan, S., El-Alfy, ES.M., Chang, YS. (eds) Spatiotemporal Data Analytics and Modeling. Big Data Management. Springer, Singapore. https://doi.org/10.1007/978-981-99-9651-3_4
Download citation
DOI: https://doi.org/10.1007/978-981-99-9651-3_4
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-9650-6
Online ISBN: 978-981-99-9651-3
eBook Packages: Computer ScienceComputer Science (R0)