Nothing Special   »   [go: up one dir, main page]

Skip to main content

Optimal Co-Ordination of Directional Overcurrent Relays in Distribution Network Using Whale Optimization Algorithm

  • Conference paper
  • First Online:
Soft Computing Applications in Modern Power and Energy Systems (EPREC 2023)

Abstract

Modern power distribution networks are incredibly complex due to the growing incorporation of distributed generators in the past few years. The coordination of Directional Overcurrent Relays (DORs) in interconnected systems with many relays is significantly hindered by this complexity. In a nonlinear and constrained optimization problem, optimal DOR coordination is essential for protecting such complex systems and necessitates rigorous constraints. In order to address the optimal coordination problems of DORs, this study suggests using the Whale Optimisation Algorithm (WOA), a bio-inspired metaheuristic technique. WOA can optimize the fitness function in electrical engineering applications by taking insights from the humpback whales’ hunting strategies. Using various fault data from 3-bus, 9-bus, and 30-bus standard systems, the effectiveness of WOA in promoting optimal DOR coordination is assessed. The main objective is to delineate the implementation of WOA to deal with DOR coordination problems. As a result, we are not comparing WOA's performance against any currently used algorithms. Rather, we use three case studies to test the algorithm's effectiveness with various population sizes and maximum iterations. The outcomes convincingly show that WOA is highly efficient in reducing the total period that primary relays are required to operate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Elsadd MA, Kawady TA, Taalab AMI, Elkalashy NI (2021) Adaptive optimum coordination of overcurrent relays for deregulated distribution system considering parallel feeders. Electr Eng 103:1849–1867. https://doi.org/10.1007/S00202-020-01187-0/TABLES/7

    Article  Google Scholar 

  2. Abdelaziz AY, Talaat HEA, Nosseir AI, Hajjar AA (2002) An adaptive protection scheme for optimal coordination of overcurrent relays. Electric Power Syst Res 61:1–9. https://doi.org/10.1016/S0378-7796(01)00176-6

    Article  Google Scholar 

  3. Chelliah TR, Thangaraj R, Allamsetty S, Pant M (2014) Coordination of directional overcurrent relays using opposition based chaotic differential evolution algorithm. Int J Electr Power Energy Syst 55:341–350. https://doi.org/10.1016/J.IJEPES.2013.09.032

    Article  Google Scholar 

  4. Castillo Salazar CA, Conde Enríquez A, Schaeffer SE (2015) Directional overcurrent relay coordination considering non-standardized time curves. Electric Power Syst Res 122:42–49. https://doi.org/10.1016/J.EPSR.2014.12.018

    Article  Google Scholar 

  5. Ibrahim AM, El-Khattam W, ElMesallamy M, Talaat HA (2016) Adaptive protection coordination scheme for distribution network with distributed generation using ABC. J Elect Syst Inform Technol 3:320–332. https://doi.org/10.1016/J.JESIT.2015.11.012

    Article  Google Scholar 

  6. Khond SV, Dhomane GA (2019) Optimum coordination of directional overcurrent relays for combined overhead/cable distribution system with linear programming technique. Protect Control Modern Power Syst 4:1–7. https://doi.org/10.1186/S41601-019-0124-6/TABLES/3

  7. Sarkar D, Kudkelwar S, Saha D (2019) Optimal coordination of overcurrent relay using crow search algorithm 7:282–297. https://doi.org/10.1080/23080477.2019.1694802

  8. Acharya D, Das DK (2021) Optimal coordination of over current relay using opposition learning-based gravitational search algorithm. J Supercomp 77:10721–10741. https://doi.org/10.1007/S11227-021-03705-8/TABLES/13

    Article  Google Scholar 

  9. Saldarriaga-Zuluaga SD, López-Lezama JM, Muñoz-Galeano N (2020) Optimal coordination of overcurrent relays in microgrids considering a non-standard characteristic. Energies 13:922. 13, 922. https://doi.org/10.3390/EN13040922

  10. Ramaswami R, Venkata SS, Damborg MJ, Postforoosh JM (1984) Computer aided transmission protection system design: Part II: Implementation and Results. IEEE Transactions on Power Apparatus and Systems. PAS-103, 60–65. https://doi.org/10.1109/TPAS.1984.318577

  11. Muhammad Y, Raja MAZ, Shah MAA, Awan SE, Ullah F, Chaudhary NI, Cheema KM, Milyani AH, Shu CM (2021) Optimal coordination of directional overcurrent relays using hybrid fractional computing with gravitational search strategy. Energy Rep 7:7504–7519. https://doi.org/10.1016/J.EGYR.2021.10.106

    Article  Google Scholar 

  12. Urdaneta AJ, Nadira R, Pérez Jiménez LG (1988) Optimal coordination of directional overcurrent relays in interconnected power systems. IEEE Trans Power Del 3:903–911. https://doi.org/10.1109/61.193867

    Article  Google Scholar 

  13. Gao F, Han L (2012) Implementing the nelder-mead simplex algorithm with adaptive parameters. Comput Optim Appl 51:259–277. https://doi.org/10.1007/s10589-010-9329-3

    Article  MathSciNet  Google Scholar 

  14. Singaravelan AMK, Ram JPBG, Kim YJ (2021) Application of two-phase simplex method (TPSM) for an efficient home energy management system to reduce peak demand and consumer consumption cost. IEEE Access 9:63591–63601. https://doi.org/10.1109/ACCESS.2021.3072683

  15. Momoh JA, El-Hawary ME, Adapa R (1999) A review of selected optimal power flow literature to 1993 part i: nonlinear and quadratic programming approaches. IEEE Trans Power Syst 14:96–103. https://doi.org/10.1109/59.744492

    Article  Google Scholar 

  16. Borzabadi AH, Alemy H (2016) Dual simplex method for solving fully fuzzy linear programming problems. 4th Iranian Joint Congress on Fuzzy and Intelligent Systems, CFIS 2015 (2016). https://doi.org/10.1109/CFIS.2015.7391653

  17. Luenberger DG, Ye Y (2015) Linear and nonlinear programming. Springer Publishing Company, Incorporated

    Google Scholar 

  18. Birla D, Maheshwari RP, Gupta HO (2006) A new nonlinear directional overcurrent relay coordination technique, and banes and boons of near-end faults based approach. IEEE Trans Power Del 21:1176–1182. https://doi.org/10.1109/TPWRD.2005.861325

    Article  Google Scholar 

  19. Ravikumar Pandi V, Zeineldin HH, Xiao W (2013) Determining optimal location and size of distributed generation resources considering harmonic and protection coordination limits. IEEE Trans Power Syst 28:1245–1254. https://doi.org/10.1109/TPWRS.2012.2209687

    Article  Google Scholar 

  20. Premkumar M, Srikanth Babu V, Somwya R (2019) Scheduling task to heterogeneous processors by modified ACO algorithm. Adv Intell Syst Comput 758:565–576. https://doi.org/10.1007/978-981-13-0514-6_55

    Article  Google Scholar 

  21. Premkumar M, Jangir P, Sowmya R, Elavarasan RM (2021) Many-objective gradient-based optimizer to solve optimal power flow problems: analysis and validations. Eng Appl Artif Intell 106:104479. https://doi.org/10.1016/J.ENGAPPAI.2021.104479

    Article  Google Scholar 

  22. Premkumar M, Jangir P, Santhosh Kumar B, Sowmya R, Haes Alhelou H, Abualigah L, Riza Yildiz A, Mirjalili S, Premkumar M (2021) A new arithmetic optimization algorithm for solving real-world multiobjective CEC-2021 constrained optimization problems: diversity analysis and validations. IEEE Access. 9:84263–84295. https://doi.org/10.1109/ACCESS.2021.3085529

    Article  Google Scholar 

  23. Devi RM, Premkumar M, Jangir P, Elkotb MA, Elavarasan RM, Nisar KS (2022) IRKO: an improved Runge-Kutta optimization algorithm for global optimization problems. Comp Mater Continua 70:4803–4827. https://doi.org/10.32604/CMC.2022.020847

  24. Hussain K, Mohd Salleh MN, Cheng S, Shi Y (2018) Metaheuristic research: a comprehensive survey. Artif Intell Rev 52:4. 52, 2191–2233. https://doi.org/10.1007/S10462-017-9605-Z

  25. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008

    Article  Google Scholar 

  26. Jordan R (2018) Optimal coordination of directional overcurrent relays. In: Jordan R (ed) Metaheuristic optimization in power engineering, pp 449–473. Institution of Engineering and Technology. https://doi.org/10.1049/PBPO131E_CH13

  27. Sarwagya K, Nayak PK, Ranjan S (2020) Optimal coordination of directional overcurrent relays in complex distribution networks using sine cosine algorithm. Electric Power Syst Res 187:106435. https://doi.org/10.1016/J.EPSR.2020.106435

    Article  Google Scholar 

  28. Amraee T (2012) Coordination of directional overcurrent relays using seeker algorithm. IEEE Trans Power Del 27:1415–1422. https://doi.org/10.1109/TPWRD.2012.2190107

    Article  Google Scholar 

  29. Moravej Z, Adelnia F, Abbasi F (2015) Optimal coordination of directional overcurrent relays using NSGA-II. Electric Power Syst Res 119:228–236. https://doi.org/10.1016/J.EPSR.2014.09.010

    Article  Google Scholar 

  30. Premkumar M, Sumithira R (2018) Humpback whale assisted hybrid maximum power point tracking algorithm for partially shaded solar photovoltaic systems. J Power Elect 18:1805–1818. https://doi.org/10.6113/JPE.2018.18.6.1805

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoharan Premkumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Premkumar, M., Sowmya, R., Kumar, J.S.V.S., Jangir, P., Abualigah, L., Ramakrishnan, C. (2024). Optimal Co-Ordination of Directional Overcurrent Relays in Distribution Network Using Whale Optimization Algorithm. In: Gupta, O.H., Padhy, N.P., Kamalasadan, S. (eds) Soft Computing Applications in Modern Power and Energy Systems. EPREC 2023. Lecture Notes in Electrical Engineering, vol 1107. Springer, Singapore. https://doi.org/10.1007/978-981-99-8007-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8007-9_17

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8006-2

  • Online ISBN: 978-981-99-8007-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics