Nothing Special   »   [go: up one dir, main page]

Skip to main content

DIFNet: Dual-Domain Information Fusion Network for Image Denoising

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15038))

Included in the following conference series:

  • 18 Accesses

Abstract

Image denoising, a critical process in computer vision, aims to restore high-quality images from their noisy counterparts. Significant progress in this field has been made possible by the emergence of various effective deep learning models. However, these methods are typically confined to processing within the single-domain and exhibit weak performance in preserving detailed information, hindering their practical application. To address this issue, we propose an efficient Dual-Domain Information Fusion Network (DIFNet) for image denoising. Specifically, we design an aggregate frequency domain and spatial domain network to capture and fuse the detailed information. The DIFNet employs a Dual-Domain Feature Fusion Module (DFFM) to integrate the extracted dual-domain information, facilitating the recalibration of weights between the spatial and frequency domains, thereby emphasizing and restoring detailed information. In the DFFM, frequency domain information is extracted through a Frequency Domain Attention Module (FDAM), while spatial domain information is acquired via the convolutional blocks in the image denoising baseline model NAFNet. Experimental results demonstrate that the dual-domain denoising method can recover more detail while maintaining denoising performance. Furthermore, the proposed method outperforms state-of-the-art approaches on widely used benchmarks, highlighting its superior performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdelhamed, A., Lin, S., Brown, M.S.: A high-quality denoising dataset for smartphone cameras. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1692–1700 (2018)

    Google Scholar 

  2. Anwar, S., Barnes, N.: Real image denoising with feature attention. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3155–3164 (2019)

    Google Scholar 

  3. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 898–916 (2010)

    Article  Google Scholar 

  4. Cai, Y., Hu, X., Wang, H., Zhang, Y., Pfister, H., Wei, D.: Learning to generate realistic noisy images via pixel-level noise-aware adversarial training. Adv. Neural. Inf. Process. Syst. 34, 3259–3270 (2021)

    Google Scholar 

  5. Chen, L., Chu, X., Zhang, X., Sun, J.: Simple baselines for image restoration. In: European Conference on Computer Vision, pp. 17–33. Springer (2022)

    Google Scholar 

  6. Chen, L., Lu, X., Zhang, J., Chu, X., Chen, C.: HINet: half instance normalization network for image restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 182–192 (2021)

    Google Scholar 

  7. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-d transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007)

    Article  MathSciNet  Google Scholar 

  8. Franzen, R.: Kodak lossless true color image suite. Source 4(2), 9 (1999). http://www.r0kus/graphics/kodak

  9. Guo, S., Yan, Z., Zhang, K., Zuo, W., Zhang, L.: Toward convolutional blind denoising of real photographs. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1712–1722 (2019)

    Google Scholar 

  10. Huang, J.B., Singh, A., Ahuja, N.: Single image super-resolution from transformed self-exemplars. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5197–5206 (2015)

    Google Scholar 

  11. Liang, J., Cao, J., Sun, G., Zhang, K., Van Gool, L., Timofte, R.: SwinIR: image restoration using swin transformer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1833–1844 (2021)

    Google Scholar 

  12. Lim, B., Son, S., Kim, H., Nah, S., Mu Lee, K.: Enhanced deep residual networks for single image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 136–144 (2017)

    Google Scholar 

  13. Ma, K., et al.: Waterloo exploration database: new challenges for image quality assessment models. IEEE Trans. Image Process. 26(2), 1004–1016 (2016)

    Google Scholar 

  14. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings Eighth IEEE International Conference on Computer Vision, ICCV 2001, vol. 2, pp. 416–423. IEEE (2001)

    Google Scholar 

  15. Patil, J., Jadhav, S.: A comparative study of image denoising techniques. Int. J. Innov. Res. Sci. Eng. Technol. 2(3), 787–794 (2013)

    Google Scholar 

  16. Peng, Y., Zhang, L., Liu, S., Wu, X., Zhang, Y., Wang, X.: Dilated residual networks with symmetric skip connection for image denoising. Neurocomputing 345, 67–76 (2019)

    Article  Google Scholar 

  17. Sheng, Z., Liu, X., Cao, S.Y., Shen, H.L., Zhang, H.: Frequency-domain deep guided image denoising. IEEE Trans. Multimed. (2022)

    Google Scholar 

  18. Tian, C., Xu, Y., Zuo, W.: Image denoising using deep CNN with batch renormalization. Neural Netw. 121, 461–473 (2020)

    Article  Google Scholar 

  19. Tian, C., Zheng, M., Zuo, W., Zhang, S., Zhang, Y., Lin, C.W.: A cross transformer for image denoising. Inf. Fusion 102, 102043 (2024)

    Article  Google Scholar 

  20. Timofte, R., Agustsson, E., Van Gool, L., Yang, M.H., Zhang, L.: NTIRE 2017 challenge on single image super-resolution: methods and results. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 114–125 (2017)

    Google Scholar 

  21. Tu, Z., et al.: Maxim: multi-axis MLP for image processing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5769–5780 (2022)

    Google Scholar 

  22. Wang, Z., Cun, X., Bao, J., Zhou, W., Liu, J., Li, H.: Uformer: a general U-shaped transformer for image restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 17683–17693 (2022)

    Google Scholar 

  23. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  24. Xue, S., Qiu, W., Liu, F., Jin, X.: Wavelet-based residual attention network for image super-resolution. Neurocomputing 382, 116–126 (2020)

    Article  Google Scholar 

  25. Yaroslavsky, L.P.: Digital Picture Processing: An Introduction, vol. 9. Springer Science & Business Media (2012)

    Google Scholar 

  26. Zamir, S.W., Arora, A., Khan, S., Hayat, M., Khan, F.S., Yang, M.H.: Restormer: efficient transformer for high-resolution image restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5728–5739 (2022)

    Google Scholar 

  27. Zamir, S.W., et al.: Learning enriched features for real image restoration and enhancement. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXV 16, pp. 492–511. Springer (2020)

    Google Scholar 

  28. Zhang, K., Li, Y., Zuo, W., Zhang, L., Van Gool, L., Timofte, R.: Plug-and-play image restoration with deep denoiser prior. IEEE Trans. Pattern Anal. Mach. Intell. 44(10), 6360–6376 (2021)

    Article  Google Scholar 

  29. Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Trans. Image Process. 26(7), 3142–3155 (2017)

    Article  MathSciNet  Google Scholar 

  30. Zhang, K., Zuo, W., Zhang, L.: FFDNet: toward a fast and flexible solution for CNN-based image denoising. IEEE Trans. Image Process. 27(9), 4608–4622 (2018)

    Article  MathSciNet  Google Scholar 

  31. Zhang, L., Lukac, R., Wu, X., Zhang, D.: PCA-based spatially adaptive denoising of CFA images for single-sensor digital cameras. IEEE Trans. Image Process. 18(4), 797–812 (2009)

    Article  MathSciNet  Google Scholar 

  32. Zhang, L., Wu, X., Buades, A., Li, X.: Color demosaicking by local directional interpolation and nonlocal adaptive thresholding. J. Electron. Imaging 20(2), 023016–023016 (2011)

    Article  Google Scholar 

  33. Zhuge, R., Wang, J., Xu, Z., Xu, Y.: Single image denoising with a feature-enhanced network. Neural Netw. 168, 313–325 (2023)

    Article  Google Scholar 

Download references

Acknowledgement

This work is supported by the National Natural Science Foundation of China (Grant No. 62176217) and the Innovation Team Funds of China West Normal University (Grant No. KCXTD2022-3). The Chinese Government Guidance Fund on Local Science and Technology Development of Sichuan Province (24ZYRGZN0018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bochuan Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, Z. et al. (2025). DIFNet: Dual-Domain Information Fusion Network for Image Denoising. In: Lin, Z., et al. Pattern Recognition and Computer Vision. PRCV 2024. Lecture Notes in Computer Science, vol 15038. Springer, Singapore. https://doi.org/10.1007/978-981-97-8685-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-8685-5_20

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-8684-8

  • Online ISBN: 978-981-97-8685-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics