Nothing Special   »   [go: up one dir, main page]

Skip to main content

SecuPath: A Secure and Privacy-Preserving Multiparty Path Planning Framework in UAV Applications

  • Conference paper
  • First Online:
Information Security and Privacy (ACISP 2024)

Abstract

With the increasing deployment and growing popularisation of autonomous unmanned aerial vehicle (UAVs), such as surveillance, package delivery, and environmental monitoring, the need for efficient and secure UAV path planning algorithms has gained a high level of attention and importance. However, existing path planning methodologies often overlook strict security measures, resulting in sensitive information, from both civilian and even military use scenarios, vulnerable to security attacks. Moreover, the involvement of multiple parties, each with its own set of sensitive information, raises concerns regarding data privacy and security. To bridge this gap, this paper presents a novel approach that employs Multi-Party Secure Computation (SMPC) techniques atop generic path planning algorithms to address these security and privacy challenges.

We propose SecuPath, a secure framework that leverages cryptographic protocols for secure communication and computation, enabling multiple entities to jointly compute optimal drone paths without revealing their private inputs to any party. By integrating this privacy-preserving layer onto generic drone path planning algorithms, we ensure the optimality of the planning process while significantly elevating the privacy and security standards of UAV path planning operations. This framework not only preserves the confidentiality and privacy of sensitive data, but also fosters collaboration in scenarios where data sharing is essential, such as in urban airspace management or disaster response. Moreover, we analyse the communication and computation overhead introduced by the SMPC and demonstrate the protocol remains practical and efficient.

This research contributes to the growing field of work addressing privacy concerns in drone applications and provides a foundation for the development of secure and collaborative UAV systems. The integration of SMPC techniques with generic drone path planning algorithms sets the groundwork for privacy-preserving drone operations with wide applications across diverse domains with a balance between robust security measures and operational feasibility.

This paper is supported by Australian Research Council (ARC) Discover Project DP220101234.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Andrés, M.E., Bordenabe, N.E., Chatzikokolakis, K., Palamidessi, C.: Geo-indistinguishability: Differential privacy for location-based systems. In: Proceedings of the 2013 ACM SIGSAC Conference on Computer and Communications Security, pp. 901–914 (2013)

    Google Scholar 

  2. Atmaca, U.I., Maple, C., Epiphaniou, G., Dianati, M.: A privacy-preserving route planning scheme for the internet of vehicles. Ad Hoc Netw. 123, 102680 (2021)

    Article  Google Scholar 

  3. Bai, T., Wang, J., Ren, Y., Hanzo, L.: Energy-efficient computation offloading for secure UAV-Edge-computing systems. IEEE Trans. Veh. Technol. 68(6), 6074–6087 (2019)

    Article  Google Scholar 

  4. Bogdanov, D., Niitsoo, M., Toft, T., Willemson, J.: High-performance secure multi-party computation for data mining applications. Int. J. Inf. Secur. 11(6), 403–418 (2012)

    Article  Google Scholar 

  5. Chen, R., Fung, B., Desai, B.C.: Differentially private trajectory data publication. arXiv preprint. arXiv:1112.2020 (2011)

  6. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to algorithms. MIT press (2022)

    Google Scholar 

  7. Department of Defense: Unmanned Systems Integrated Roadmap FY2017-2042. Tech. rep., Office of the Under Secretary of Defense for Acquisition and Sustainment (2018). https://apps.dtic.mil/sti/pdfs/AD1059546.pdf

  8. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–271 (1959)

    Article  MathSciNet  Google Scholar 

  9. Dwork, C.: Differential Privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006). https://doi.org/10.1007/11787006_1

    Chapter  Google Scholar 

  10. Enisa, M.: Good practices for security of internet of things in the context of smart manufacturing (2018)

    Google Scholar 

  11. Farokhi, F., Shames, I., Johansson, K.H.: Private routing and ride-sharing using homomorphic encryption. IET Cyber-Phys. Syst.: Theor. Appl. 5(4), 311–320 (2020)

    Article  Google Scholar 

  12. Federal Aviation Administration: Small Unmanned Aircraft Systems (sUAS) Advisory Circular. Advisory Circular AC 107-2, U.S. Department of Transportation (2021)

    Google Scholar 

  13. Florian, M., Finster, S., Baumgart, I.: Privacy-preserving cooperative route planning. IEEE Internet Things J. 1(6), 590–599 (2014)

    Article  Google Scholar 

  14. Fotouhi, A., et al.: Survey on UAV cellular communications: Practical aspects, standardization advancements, regulation, and security challenges. IEEE Commun Surv. Tutorials 21(4), 3417–3442 (2019)

    Article  Google Scholar 

  15. Fu, Z., Ren, K., Shu, J., Sun, X., Huang, F.: Enabling personalized search over encrypted outsourced data with efficiency improvement. IEEE Trans. Parallel Distrib. Syst. 27(9), 2546–2559 (2015)

    Article  Google Scholar 

  16. Hart, P., Nilsson, N., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968). https://doi.org/10.1109/tssc.1968.300136, https://doi.org/10.1109/tssc.1968.300136

  17. Ko, Y., Kim, J., Duguma, D.G., Astillo, P.V., You, I., Pau, G.: Drone secure communication protocol for future sensitive applications in military zone. Sensors 21(6), 2057 (2021)

    Article  Google Scholar 

  18. Lavalle, S.: Rapidly-exploring random trees: a new tool for path planning. Res. Rep. 9811 (1998)

    Google Scholar 

  19. Liu, W., Wang, Y.B., Jiang, Z.T., Cao, Y.Z.: A protocol for the quantum private comparison of equality with \(\chi \)-type state. Int. J. Theor. Phys. 51(1), 69–77 (2012)

    Article  MathSciNet  Google Scholar 

  20. Liu, Y.C., Bianchin, G., Pasqualetti, F.: Secure trajectory planning against undetectable spoofing attacks. Automatica 112, 108655 (2020)

    Article  MathSciNet  Google Scholar 

  21. Michael, N., Fink, J., Kumar, V.: Cooperative manipulation and transportation with aerial robots. Auton. Robot. 30, 73–86 (2011)

    Article  Google Scholar 

  22. Perazzo, P., Sorbelli, F.B., Conti, M., Dini, G., Pinotti, C.M.: Drone path planning for secure positioning and secure position verification. IEEE Trans. Mob. Comput. 16(9), 2478–2493 (2016)

    Article  Google Scholar 

  23. Ramadan, M., Du, G., Li, F., Xu, C.: A survey of public key infrastructure-based security for mobile communication systems. Symmetry 8(9), 85 (2016)

    Article  MathSciNet  Google Scholar 

  24. Rashid, A., Sharma, D., Lone, T.A., Gupta, S., Gupta, S.K.: Secure Communication in UAV Assisted HetNets: A Proposed Model. In: Wang, G., Lu, R. (eds.) SpaCCS 2019. LNCS, vol. 11611, pp. 427–440. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24907-6_32

    Chapter  Google Scholar 

  25. Regulation, G.D.P.: Regulation (EU) 2016/679 of the european parliament and of the council of 27 April 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing directive 95/46. Official J. Eur. Union 59(1–88), 294 (2016)

    Google Scholar 

  26. Sealfon, A.: Shortest paths and distances with differential privacy. In: Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, pp. 29–41 (2016)

    Google Scholar 

  27. Shoufan, A., AlNoon, H., Baek, J.: Secure Communication in Civil Drones. In: Camp, O., Weippl, E., Bidan, C., Aïmeur, E. (eds.) ICISSP 2015. CCIS, vol. 576, pp. 177–195. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27668-7_11

    Chapter  Google Scholar 

  28. Shundong, L., Chunying, W., Daoshun, W., Yiqi, D.: Secure multiparty computation of solid geometric problems and their applications. Inf. Sci. 282, 401–413 (2014)

    Article  MathSciNet  Google Scholar 

  29. Suárez-Albela, M., Fernández-Caramés, T.M., Fraga-Lamas, P., Castedo, L.: A practical performance comparison of ECC and RSA for resource-constrained IOT devices. In: 2018 Global Internet of Things Summit (GIoTS), pp. 1–6. IEEE (2018)

    Google Scholar 

  30. Toft, T.: Secure data structures based on multi-party computation. In: Proceedings of the 30th annual ACM SIGACT-SIGOPS symposium on Principles of distributed computing, pp. 291–292 (2011)

    Google Scholar 

  31. Tomic, T., et al.: Toward a fully autonomous UAV: research platform for indoor and outdoor urban search and rescue. IEEE Robot. Autom. Mag. 19(3), 46–56 (2012)

    Article  Google Scholar 

  32. Yao, A.C.C.: How to generate and exchange secrets. In: 27th Annual Symposium on Foundations of Computer Science (SFCS 1986), pp. 162–167. IEEE (1986)

    Google Scholar 

  33. Yao, Y.E., Dash, P., Pattabiraman, K.: Swarmfuzz: discovering GPS spoofing attacks in drone swarms. In: 2023 53rd Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), pp. 366–375. IEEE (2023)

    Google Scholar 

  34. Yu, H., Yin, L., Zhang, H., Zhan, D., Qu, J., Zhang, G.: Road distance computation using homomorphic encryption in road networks. Comput. Mater. Continua 69(3) (2021)

    Google Scholar 

  35. Zhou, Y., et al.: Secure communications for UAV-enabled mobile edge computing systems. IEEE Trans. Commun. 68(1), 376–388 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanjun Shen , Joseph Liu , Xingliang Yuan , Shifeng Sun or Hui Cui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shen, Y., Liu, J., Yuan, X., Sun, S., Cui, H. (2024). SecuPath: A Secure and Privacy-Preserving Multiparty Path Planning Framework in UAV Applications. In: Zhu, T., Li, Y. (eds) Information Security and Privacy. ACISP 2024. Lecture Notes in Computer Science, vol 14897. Springer, Singapore. https://doi.org/10.1007/978-981-97-5101-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-5101-3_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-5100-6

  • Online ISBN: 978-981-97-5101-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics