Abstract
Privacy engineering, emphasizing data protection during the design, build, and maintenance of software systems, faces new challenges and opportunities in the emerging decentralized data architectures, namely data mesh. By decentralizing data product ownership across domains, data mesh offers a novel paradigm to rethink how privacy principles are incorporated and maintained in modern system architectures. This paper introduces a conceptual framework that integrates privacy engineering principles with the decentralized nature of data mesh. Our approach provides a holistic view, capturing essential dimensions from both domains. We explore the intersections of privacy engineering and data mesh dimensions and provide guidelines for the stakeholders of a data mesh initiative to embed better data privacy controls. Our framework aims to offer a blueprint to ensure robust privacy practices are inherent, not just additive, during the adoption of data mesh.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agarwal, V., et al.: Compliance-as-code for cybersecurity automation in hybrid cloud. In: 2022 IEEE 15th International Conference on Cloud Computing (CLOUD), pp. 427–437 (2022)
Antignac, T., Sands, D., Schneider, G.: Data minimisation: a language-based approach. In: De Capitani di Vimercati, S., Martinelli, F. (eds.) SEC 2017. IAICT, vol. 502, pp. 442–456. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58469-0_30
Bier, C., Birnstill, P., Krempel, E., Vagts, H., Beyerer, J.: Enhancing privacy by design from a developer’s perspective. In: Preneel, B., Ikonomou, D. (eds.) APF 2012. LNCS, vol. 8319, pp. 73–85. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54069-1_5
Cavoukian, A., et al.: Privacy by design: the 7 foundational principles. Information and privacy commissioner of Ontario, Canada 5, 12 (2009)
Chen, D., Zhao, H.: Data security and privacy protection issues in cloud computing. In: 2012 International Conference on Computer Science and Electronics Engineering, vol. 1, pp. 647–651 (2012)
Cranor, L.: Web Privacy with P3P. O’Reilly Media Inc., Sebastopol (2002)
Cranor, L.F.: Necessary but not sufficient: standardized mechanisms for privacy notice and choice. J. Telecommun. High Technol. Law 10, 273 (2012)
Crosby, M., Pattanayak, P., Verma, S., Kalyanaraman, V., et al.: Blockchain technology: beyond bitcoin. Appl. Innov. 2(6–10), 71 (2016)
Danezis, G., et al.: Privacy and data protection by design-from policy to engineering. arXiv preprint arXiv:1501.03726 (2015)
De Montjoye, Y.A., Rocher, L., Pentland, A.S.: bandicoot: a python toolbox for mobile phone metadata. J. Mach. Learn. Res. 17(1), 6100–6104 (2016)
Dehghani, Z.: Data Mesh Delivering Data-Driven Value at Scale. O’Reilly Media, Sebastopol (2022)
Díaz, C., Seys, S., Claessens, J., Preneel, B.: Towards measuring anonymity. In: Dingledine, R., Syverson, P. (eds.) PET 2002. LNCS, vol. 2482, pp. 54–68. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36467-6_5
El Emam, K., Dankar, F.K.: Protecting privacy using k-anonymity. J. Am. Med. Inform. Assoc. 15(5), 627–637 (2008)
Fang, L., LeFevre, K.: Privacy wizards for social networking sites. In: Proceedings of the 19th International Conference on World Wide Web, pp. 351–360 (2010)
Friedland, G., Sommer, R.: Cybercasing the joint: on the privacy implications of geo-tagging. In: 5th USENIX Workshop on Hot Topics in Security (HotSec 2010) (2010)
Goedegebuure, A., et al.: Data mesh: a systematic gray literature review. arXiv preprint arXiv:2304.01062 (2023)
Grünewald, E.: Cloud native privacy engineering through DevPrivOps. In: Friedewald, M., Krenn, S., Schiering, I., Schiffner, S. (eds.) Privacy and Identity 2021. IAICT, vol. 644, pp. 122–141. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-99100-5_10
Heurix, J., Zimmermann, P., Neubauer, T., Fenz, S.: A taxonomy for privacy enhancing technologies. Comput. Secur. 53, 1–17 (2015)
Hoepman, J.-H.: Privacy design strategies. In: Cuppens-Boulahia, N., Cuppens, F., Jajodia, S., Abou El Kalam, A., Sans, T. (eds.) SEC 2014. IAICT, vol. 428, pp. 446–459. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55415-5_38
Jarmul, K.: Privacy-first data via data mesh (2022). https://www.thoughtworks.com/insights/articles/privacy-first-data-via-data-mesh
Khatri, V., Brown, C.V.: Designing data governance. Commun. ACM 53(1), 148–152 (2010)
Kumara, I., Kayes, A.S.M., Mundt, P., Schneider, R.: Data governance. In: Liebregts, W., van den Heuvel, W.-J., van den Born, A. (eds.) Data Science for Entrepreneurship. CCB, pp. 37–62. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-19554-9_3
Lăzăroiu, G., Kovacova, M., Kliestikova, J., Kubala, P., Valaskova, K., Dengov, V.V.: Data governance and automated individual decision-making in the digital privacy general data protection regulation. Administratie si Manag. Public 31, 132–142 (2018)
de Montjoye, Y.A., Hidalgo, C.A., Verleysen, M., Blondel, V.D.: Unique in the crowd: the privacy bounds of human mobility. Sci. Rep. 3(1), 1376 (2013)
Newman, S.: Building Microservices. O’Reilly Media Inc., Sebastopol (2021)
Otto, P.N., Antón, A.I.: Addressing legal requirements in requirements engineering: a systematic literature review. IEEE Trans. Softw. Eng. 43(2), 158–171 (2017)
Pardau, S.L.: The California consumer privacy act: towards a European-style privacy regime in the United States. J. Tech. L. & Pol’y 23, 68 (2018)
General Data Protection Regulation: Regulation (EU) 2016/679 of the European parliament and of the council. Regulation (EU) 679/2016 (2016)
Richards, M.: Microservices vs. Service-Oriented Architecture. O’Reilly Media, Sebastopol (2015)
Schneider, S., Sunyaev, A.: Determinant factors of cloud-sourcing decisions: reflecting on the IT outsourcing literature in the era of cloud computing. J. Inf. Technol. 31, 1–31 (2016). https://doi.org/10.1057/jit.2014.25
Spiekermann, S., Korunovska, J., Langheinrich, M.: Inside the organization: why privacy and security engineering is a challenge for engineers. Proc. IEEE 107(3), 600–615 (2018)
Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Uncertainty Fuzziness Knowl.-Based Syst. 10(5), 557–570 (2002)
Voigt, P., von dem Bussche, A.: Enforcement and fines under the GDPR. In: Voigt, P., von dem Bussche, A. (eds.) The EU General Data Protection Regulation (GDPR), pp. 201–217. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57959-7_7
Wider, A., Verma, S., Akhtar, A.: Decentralized data governance as part of a data mesh platform: concepts and approaches. In: 2023 IEEE International Conference on Web Services (ICWS), pp. 746–754 (2023)
Williams, J., Nee, L.: Privacy engineering. Computer 55(10), 113–118 (2022)
Xu, R., Baracaldo, N., Joshi, J.: Privacy-preserving machine learning: methods, challenges and directions. arXiv preprint arXiv:2108.04417 (2021)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Borovits, N., Kumara, I., Tamburri, D.A., Van Den Heuvel, WJ. (2024). Privacy Engineering in the Data Mesh: Towards a Decentralized Data Privacy Governance Framework. In: Monti, F., et al. Service-Oriented Computing – ICSOC 2023 Workshops. ICSOC 2023. Lecture Notes in Computer Science, vol 14518. Springer, Singapore. https://doi.org/10.1007/978-981-97-0989-2_21
Download citation
DOI: https://doi.org/10.1007/978-981-97-0989-2_21
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-97-0988-5
Online ISBN: 978-981-97-0989-2
eBook Packages: Computer ScienceComputer Science (R0)