Nothing Special   »   [go: up one dir, main page]

Skip to main content

Intrusion Detection System Based on Modified K-means and Multi-level Support Vector Machines

  • Conference paper
  • First Online:
Soft Computing in Data Science (SCDS 2015)

Abstract

This paper proposed a multi-level model for intrusion detection that combines the two techniques of modified K-means and support vector machine (SVM). Modified K-means is used to reduce the number of instances in a training data set and to construct new training data sets with high-quality instances. The new, high-quality training data sets are then utilized to train SVM classifiers. Consequently, the multi-level SVMs are employed to classify the testing data sets with high performance. The well-known KDD Cup 1999 data set is used to evaluate the proposed system; 10% KDD is applied for training, and corrected KDD is utilized intesting. The experiments demonstrate that the proposed model effectively detects attacks in the DoS, R2L, and U2R categories. It also exhibits a maximum overall accuracy of 95.71%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ghanem, T.F., Elkilani, W.S., Abdul-kader, H.M.: A hybrid approach for efficient anomaly detection using metaheuristic methods. J. Adv. Res. Article in Press (2014)

    Google Scholar 

  2. Om, H., Kundu, A.: A hybrid system for reducing the false alarm rate of anomaly intrusion detection system. In: 1st International Conference on Recent Advances in Information Technology (RAIT), pp. 131–136. IEEE (2012)

    Google Scholar 

  3. Horng, S.-J., Su, M.-Y., Chen, Y.-H., et al.: A novel intrusion detection system based on hierarchical clustering and support vector machines. Expert Syst. Appl. 38, 306–313 (2011)

    Article  Google Scholar 

  4. Hasan, M., Nasser, M., Pal, B., Ahmad, S.: Intrusion Detection Using Combination of Various Kernels Based Support Vector Machine. International Journal of Scientific & Engineering Research 4, 1454–1463 (2013)

    Google Scholar 

  5. Yao, J., Zhao, S., Fan, L.: An enhanced support vector machine model for intrusion detection. In: Wang, G.-Y., Peters, J.F., Skowron, A., Yao, Y. (eds.) RSKT 2006. LNCS (LNAI), vol. 4062, pp. 538–543. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Celebi, M.E., Kingravi, H.A., Vela, P.A.: A comparative study of efficient initialization methods for the k-means clustering algorithm. Expert Syst. Appl. 40, 200–210 (2013)

    Article  Google Scholar 

  7. Gao, M., Wang, N.: A Network Intrusion Detection Method Based on Improved K-means Algorithm. Adv. Sci. Technol. Lett. 53, 429–433 (2014)

    Article  Google Scholar 

  8. Sujatha, M.S., Sona, M.A.S.: New fast k-means clustering algorithm using modified centroid selection method. International Journal of Engineering Research and Technology 2, 1–9 (2013)

    Google Scholar 

  9. Kathiresan, V., Sumathi, P.: An efficient clustering algorithm based on Z-Score ranking method. In: International Conference on Computer Communication and Informatics (ICCCI), pp. 1–4. IEEE (2012)

    Google Scholar 

  10. Nazeer, K.A., Sebastian, M.: Improving the Accuracy and Efficiency of the k-means Clustering Algorithm. In: Proceedings of the World Congress on Engineering, vol. 1, pp. 1–3 (2009)

    Google Scholar 

  11. Pfahringer, B.: Winning the KDD99 classification cup: bagged boosting. ACM SIGKDD Explorations Newsletter 1, 65–66 (2000)

    Google Scholar 

  12. Xiang, C., Chong, M., Zhu, H.: Design of mnitiple-level tree classifiers for intrusion detection system. In: 2004 IEEE Conference on Cybernetics and Intelligent Systems, vol. 2, pp. 873–878. IEEE (2004)

    Google Scholar 

  13. Xiang, C., Yong, P.C., Meng, L.S.: Design of multiple-level hybrid classifier for intrusion detection system using Bayesian clustering and decision trees. Pattern Recognit. Lett. 29, 918–924 (2008)

    Article  Google Scholar 

  14. Natesan, P., Balasubramanie, P., Gowrison, G.: Improving the Attack Detection Rate in Network Intrusion Detection using Adaboost Algorithm. Journal of Computer Science 8, 1041–1048 (2012)

    Article  Google Scholar 

  15. Ambwani, T.: Multi class support vector machine implementation to intrusion detection. In: Proceedings of the International Joint Conference on Neural Networks, vol. 3, pp. 2300–2305. IEEE (2003)

    Google Scholar 

  16. He, L.: An Improved Intrusion Detection based on Neural Network and Fuzzy Algorithm. Journal of Networks 9, 1274–1280 (2014)

    Google Scholar 

  17. Lu, H., Xu, J.: Three-level Hybrid Intrusion detection system. In: International Conference on Information Engineering and Computer Science, ICIECS 2009, pp. 1–4. IEEE (2009)

    Google Scholar 

  18. Gogoi, P., Bhattacharyya, D., Borah, B., Kalita, J.K.: MLH-IDS: A Multi-Level Hybrid Intrusion Detection Method. The Computer Journal 57, 602–623 (2014)

    Article  Google Scholar 

  19. Sabhnani, M., Serpen, G.: Application of Machine Learning Algorithms to KDD Intrusion Detection Dataset within Misuse Detection Context. In: MLMTA, pp. 209–215 (2003)

    Google Scholar 

  20. Jianliang, M., Haikun, S., Ling, B.: The application on intrusion detection based on k-means cluster algorithm. In: International Forum on Information Technology and Applications, IFITA 2009, vol. 1, pp. 150–152. IEEE (2009)

    Google Scholar 

  21. Bhatia, M., Khurana, D.: Experimental study of Data clustering using k-Means and modified algorithms. International Journal of Data Mining & Knowledge Management Process (IJDKP) 3, 17–30 (2013)

    Article  Google Scholar 

  22. KDD Cup 1999 Data set. http://archive.ics.uci.edu/ml/machine-learning-databases/kddcup99-mld/

  23. LibSVM. http://www.csie.ntu.edu.tw/~cjlin/libsvm/

  24. Tsang, C.-H., Kwong, S., Wang, H.: Genetic-fuzzy rule mining approach and evaluation of feature selection techniques for anomaly intrusion detection. Pattern Recognit. 40, 2373–2391 (2007)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wathiq Laftah Al-Yaseen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Singapore

About this paper

Cite this paper

Al-Yaseen, W.L., Othman, Z.A., Nazri, M.Z.A. (2015). Intrusion Detection System Based on Modified K-means and Multi-level Support Vector Machines. In: Berry, M., Mohamed, A., Yap, B. (eds) Soft Computing in Data Science. SCDS 2015. Communications in Computer and Information Science, vol 545. Springer, Singapore. https://doi.org/10.1007/978-981-287-936-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-981-287-936-3_25

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-287-935-6

  • Online ISBN: 978-981-287-936-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics