Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Novel Integrating Approach Between Graph Neural Network and Complex Representation for Link Prediction in Knowledge Graph

  • Conference paper
  • First Online:
Recent Challenges in Intelligent Information and Database Systems (ACIIDS 2022)

Abstract

Deep learning brings high results in many problems, including Link Prediction on Knowledge Graphs (KGs). Although there are many techniques to implement deep learning into KGs, Graph Neural Networks (GNNs) have recently emerged as a promising direction for representing the structure of KGs as input for a decoder. With this structural information, GNNs can help to retain more information from the original graph than conventional embeddings like TransE, TransH, RESCAL. As a result, the learning model achieves higher accuracy in predicting missing links between entities in the KG. Meanwhile, several studies have successfully demonstrated the intrinsic properties of the embedding process in complex space while keeping many binary relations (symmetric and asymmetric). Thus, this paper proposes deploying GNNs into complex space to increase the model’s predictive capability. Another issue with GNNs is that they are susceptible to over-squashing when a large amount of information propagating between nodes is compressed down to a fixed representation space. As a result, we utilize a dynamic attention mechanism to minimize the adverse effects of these factors, and experiments on benchmark datasets have indicated that our proposal achieves a significant improvement compared to baseline models on almost all standard metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdelaziz, I., Fokoue, A., Hassanzadeh, O., Zhang, P., Sadoghi, M.: Large-scale structural and textual similarity-based mining of knowledge graph to predict drug-drug interactions. J. Web Semant. 44, 104–117 (2017)

    Article  Google Scholar 

  2. Alon, U., Yahav, E.: On the bottleneck of graph neural networks and its practical implications. arXiv preprint arXiv:2006.05205 (2020)

  3. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: Advances in Neural Information Processing Systems, vol. 26 (2013)

    Google Scholar 

  4. Brody, S., Alon, U., Yahav, E.: How attentive are graph attention networks? arXiv preprint arXiv:2105.14491 (2021)

  5. Cai, L., Yan, B., Mai, G., Janowicz, K., Zhu, R.: TransGCN: coupling transformation assumptions with graph convolutional networks for link prediction. In: Proceedings of the 10th International Conference on Knowledge Capture, pp. 131–138 (2019)

    Google Scholar 

  6. Dai, Y., Wang, S., Xiong, N.N., Guo, W.: A survey on knowledge graph embedding: approaches, applications and benchmarks. Electronics 9(5), 750 (2020)

    Article  Google Scholar 

  7. Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2D knowledge graph embeddings. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  8. Ji, G., He, S., Xu, L., Liu, K., Zhao, J.: Knowledge graph embedding via dynamic mapping matrix. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 687–696 (2015)

    Google Scholar 

  9. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  10. Kristiadi, A., Khan, M.A., Lukovnikov, D., Lehmann, J., Fischer, A.: Incorporating literals into knowledge graph embeddings. In: Ghidini, C., et al. (eds.) ISWC 2019. LNCS, vol. 11778, pp. 347–363. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30793-6_20

    Chapter  Google Scholar 

  11. Li, F.L., et al.: Alime assist: an intelligent assistant for creating an innovative e-commerce experience. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 2495–2498 (2017)

    Google Scholar 

  12. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings for knowledge graph completion. In: Twenty-Ninth AAAI Conference on Artificial Intelligence (2015)

    Google Scholar 

  13. Nguyen, D.Q., Nguyen, T.D., Nguyen, D.Q., Phung, D.: A novel embedding model for knowledge base completion based on convolutional neural network. arXiv preprint arXiv:1712.02121 (2017)

  14. Nickel, M., Tresp, V., Kriegel, H.P.: A three-way model for collective learning on multi-relational data. In: ICML (2011)

    Google Scholar 

  15. Schlichtkrull, M., Kipf, T.N., Bloem, P., van den Berg, R., Titov, I., Welling, M.: Modeling relational data with graph convolutional networks. In: Gangemi, A., et al. (eds.) ESWC 2018. LNCS, vol. 10843, pp. 593–607. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93417-4_38

    Chapter  Google Scholar 

  16. Toutanova, K., Chen, D., Pantel, P., Poon, H., Choudhury, P., Gamon, M.: Representing text for joint embedding of text and knowledge bases. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pp. 1499–1509 (2015)

    Google Scholar 

  17. Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embeddings for simple link prediction. In: International Conference on Machine Learning, pp. 2071–2080. PMLR (2016)

    Google Scholar 

  18. Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding: a survey of approaches and applications. IEEE Trans. Knowl. Data Eng. 29(12), 2724–2743 (2017)

    Article  Google Scholar 

  19. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 28 (2014)

    Google Scholar 

  20. Xie, R., Liu, Z., Jia, J., Luan, H., Sun, M.: Representation learning of knowledge graphs with entity descriptions. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 30 (2016)

    Google Scholar 

  21. Yang, B., Yih, W.T., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases. arXiv preprint arXiv:1412.6575 (2014)

  22. Ye, R., Li, X., Fang, Y., Zang, H., Wang, M.: A vectorized relational graph convolutional network for multi-relational network alignment. In: IJCAI, pp. 4135–4141 (2019)

    Google Scholar 

Download references

Acknowledgements

This research is funded by the University of Science, VNU-HCM, Vietnam under grant number CNTT 2022-02 and Advanced Program in Computer Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thanh Le .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Le, T., Tran, L., Le, B. (2022). A Novel Integrating Approach Between Graph Neural Network and Complex Representation for Link Prediction in Knowledge Graph. In: Szczerbicki, E., Wojtkiewicz, K., Nguyen, S.V., Pietranik, M., Krótkiewicz, M. (eds) Recent Challenges in Intelligent Information and Database Systems. ACIIDS 2022. Communications in Computer and Information Science, vol 1716. Springer, Singapore. https://doi.org/10.1007/978-981-19-8234-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-8234-7_21

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-8233-0

  • Online ISBN: 978-981-19-8234-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics