Nothing Special   »   [go: up one dir, main page]

Skip to main content

Attributed Network Embedding Based on Attributed-Subgraph-Based Random Walk for Community Detection

  • Conference paper
  • First Online:
Computer Supported Cooperative Work and Social Computing (ChineseCSCW 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1492))

  • 594 Accesses

Abstract

The random-walk-based attribute network embedding methods aim to learn a low-dimensional embedding vector for each node considering the network structure and node attributes, facilitating various downstream inference tasks. However, most existing attribute network embedding methods base on random walk usually sample many redundant samples and suffer from inconsistency between node structure and attributes. In this paper, we propose a novel attributed network embedding method for community detection, which can generate node sequences based on attributed-subgraph-based random walk and filter redundant samples before model training. In addition, an improved network embedding enhancement strategy is applied to integrate high-order attributed and structure information of nodes into embedding vectors. Experimental results of community detection on synthetic network and real-world network show that our algorithm is effective and efficient compared with other algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://linqs.soe.ucsc.edu/data.

References

  1. Girvan, M., Newman, M.E.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. 99(12), 7821–7826 (2002)

    Article  MathSciNet  Google Scholar 

  2. Hou, C., He, S., Tang, K.: RoSANE: robust and scalable attributed network embedding for sparse networks. Neurocomputing 409, 231–243 (2020)

    Article  Google Scholar 

  3. Cao, S., Lu, W., Xu, Q.: GraRep: learning graph representations with global structural information. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, pp. 891–900 (2015)

    Google Scholar 

  4. Qiu, J., Dong, Y., Ma, H., Li, J., Wang, K., Tang, J.: Network embedding as matrix factorization: unifying DeepWalk, LINE, PTE, and node2vec. In: Proceedings of the 11th ACM International Conference on Web Search and Data Mining, pp. 459–467 (2018)

    Google Scholar 

  5. Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 701–710 (2014)

    Google Scholar 

  6. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 855–864 (2016)

    Google Scholar 

  7. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph neural network model. IEEE Trans. Neural Netw. 20(1), 61–80 (2008)

    Article  Google Scholar 

  8. Hamilton, W.L., Ying, R., Leskovec, J.: Inductive representation learning on large graphs. arXiv preprint arXiv:1706.02216 (2017)

  9. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)

  10. Yang, C., Sun, M., Liu, Z., Tu, C.: Fast network embedding enhancement via high order proximity approximation. In: IJCAI, pp. 3894–3900 (2017)

    Google Scholar 

  11. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theor. 28(2), 129–137 (1982)

    Article  MathSciNet  Google Scholar 

  12. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: LINE: large-scale information network embedding. In: Proceedings of the 24th International Conference on World Wide Web, pp. 1067–1077 (2015)

    Google Scholar 

  13. Wang, D., Cui, P., Zhu, W.: Structural deep network embedding. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1225–1234 (2016)

    Google Scholar 

  14. Yang, C., Liu, Z., Zhao, D., Sun, M., Chang, M.: Network representation learning with rich text information. In: 24th International Joint Conference on Artificial Intelligence (2015)

    Google Scholar 

  15. Huang, X. Li, J., Hu, X.: Accelerated attributed network embedding. In: Proceedings of the 2017 SIAM International Conference on Data Mining, pp. 633–641. SIAM (2017)

    Google Scholar 

  16. Yang, H., Pan, S., Zhang, P., Chen, L., Lian, D., Zhang, C.: Binarized attributed network embedding. In: 2018 IEEE International Conference on Data Mining (ICDM), pp. 1476–1481. IEEE (2018)

    Google Scholar 

  17. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  18. Kipf, T.N., Welling, M.: Variational graph auto-encoders. arXiv preprint arXiv:1611.07308 (2016)

  19. Pan, S., Hu, R., Long, G., Jiang, J., Yao, L., Zhang, C.: Adversarially regularized graph autoencoder for graph embedding. arXiv preprint arXiv:1802.04407 (2018)

  20. Pan, S., Wu, J., Zhu, X., Zhang, C., Wang, Y.: Tri-party deep network representation. Network 11(9), 12 (2016)

    Google Scholar 

  21. Bandyopadhyay, S., Biswas, A., Kara, H., Murty, M.: A multilayered informative random walk for attributed social network embedding. Front. Artif. Intell. Appl. 325, 1738–1745 (2020)

    Google Scholar 

  22. Arya, S., Mount, D.M., Netanyahu, N.S., Silverman, R., Wu, A.Y.: An optimal algorithm for approximate nearest neighbor searching fixed dimensions. J. ACM (JACM) 45(6), 891–923 (1998)

    Article  MathSciNet  Google Scholar 

  23. Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed representations of words and phrases and their compositionality. arXiv preprint arXiv:1310.4546 (2013)

  24. Lancichinetti, A., Fortunato, S., Radicchi, F.: Benchmark graphs for testing community detection algorithms. Phys. Rev. E 78(4), 046110 (2008)

    Article  Google Scholar 

  25. Huang, B., Wang, C., Wang, B.: NMLPA: uncovering overlapping communities in attributed networks via a multi-label propagation approach. Sensors 19(2), 260 (2019)

    Article  Google Scholar 

  26. Danon, L., Diaz-Guilera, A., Duch, J., Arenas, A.: Comparing community structure identification. J. Stat. Mech. Theor. Exp. 2005(09), P09008 (2005)

    Article  Google Scholar 

  27. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Rese. 9(11), 2579–2605 (2008)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Guo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Q., Guo, K., Wu, L. (2022). Attributed Network Embedding Based on Attributed-Subgraph-Based Random Walk for Community Detection. In: Sun, Y., et al. Computer Supported Cooperative Work and Social Computing. ChineseCSCW 2021. Communications in Computer and Information Science, vol 1492. Springer, Singapore. https://doi.org/10.1007/978-981-19-4549-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-4549-6_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-4548-9

  • Online ISBN: 978-981-19-4549-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics