Nothing Special   »   [go: up one dir, main page]

Skip to main content

Improved PID Control Strategy for Speed Loop of High Performance AC Servo System and Its Application

  • Conference paper
  • First Online:
The proceedings of the 16th Annual Conference of China Electrotechnical Society

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 891))

  • 1987 Accesses

Abstract

With the development of industrial robots, numerical control machines and servo motors, people have more urgent requirements on the control performance and control accuracy of high-performance AC servo system. PID control strategy is extensively used in the speed loop of modern AC servo system. In view of the deficiency of the PID control strategy, this paper improves the speed loop PID control strategy of high performance AC servo system from three aspects: IP control, two-degree-of-freedom control and PID with DOB. Finally, the main servo products of some corporation are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Weijie, L.: Research on control strategy of permanent magnet synchronous motor servo system (Doctoral disturbance, Zhejiang University). (in Chinese)

    Google Scholar 

  2. Ye, L., Xinping, Y.: Research status and application prospect of permanent magnet synchronous motor servo system. Micromotor 034(004), 30–33 (2001). (in Chinese)

    Google Scholar 

  3. Shenghua, H., Fang, W.: Development of permanent magnet AC servo system at home and abroad. Micro Special Motor 36(005), 52–56 (2008). (in Chinese)

    Google Scholar 

  4. Qingbo, H., Zhengyu, L.: Design of position feedforward controller in all digital servo system. Electric drive 35(005), 24–27 (2005). (in Chinese)

    Google Scholar 

  5. Tarczewski, T., Grzesiak, L.M.: State feedback control of the PMSM servo-drive with sinusoidal voltage source inverter. In: 2012 15th InternationalPower Electronics and Motion Control Conference (EPE/PEMC). IEEE (2012)

    Google Scholar 

  6. Baoquan, K., Shukang, C.: AC Servo Motor and its Control. China Machine Press (2008). (in Chinese)

    Google Scholar 

  7. Pajchrowski, T., Zawirski, K.: Adaptive neural speed controller for PMSM servodrive with variable parameters. In: Power Electronics & Motion Control Conference. IEEE (2013)

    Google Scholar 

  8. Jiancheng, T.: Development trend of servo motor control technology in CNC system. Electromechanical Eng. Technol. 05, 11–13 (2003). (in Chinese)

    Google Scholar 

  9. Fengbo, C.: Application and development trend of servo technology. Electromech. Equipment 24(004), 5–8 (2007). (in Chinese)

    Google Scholar 

  10. Naunin, D., Hetzel, D., Reuss, H.C., Sechelmann, C.E.: Completely digital position feedback control for synchronous servodrives. IEEE Trans. Power Electron. 5(4), 495–502 (1989)

    Article  Google Scholar 

  11. Butko, P., Vittek, J., Fedor, T., Struharnansky, L.: Reducing energy consumption of servo drive with induction motor. In: 2016 ELEKTRO. IEEE (2016)

    Google Scholar 

  12. Haifeng, Y., Qi, L., Wei, J.: Development of digital controller for high precision servo stable tracking platform. J. Southeast Univ. (Natural Science Edition) S1, 96–100 (2004). (in Chinese)

    Google Scholar 

  13. Fujita, M., Shimemura, E.: Integrity conditions for a class of robust servo systems. IEEJ Trans. Electron. Inf. Syst. 109(6), 424–431 (2008)

    Google Scholar 

  14. Baishan, M., Haihua, L., Jinping, Z.: Application of a new speed regulator in direct torque control system. Electr. Autom. 032(002), 4–6 (2010). (in Chinese)

    Google Scholar 

  15. Jun, W., Chengyuan, W., Qingding, G.: Application of identification compensation technology in permanent magnet linear synchronous motor servo system. J. Shenyang Univ. Technol. 01, 18–21 (1999). (in Chinese)

    Google Scholar 

  16. Liaw, C.M., Lin, F.J., Kung, Y.S.: Design and implementation of a high performance induction motor servo drive. IEE Proc. B - Electric Power Appl. 140(4), 241–248 (1993)

    Article  Google Scholar 

  17. Harada, K., Matsuoka, T., Murata, H.: A design method of optimal deadbeat servo system with two-degree-of-freedom. IEEJ Trans. Electron. Inf. Syst. 119(7), 858–867 (2008)

    Google Scholar 

  18. Ahmed, F.I., El-Tobshy, A.M., Mahfouz, A.A., Ibrahim, M.: P-I and I-P controllers in a closed loop for DC motor drives. In: Proceedings of the Power Conversion Conference - Nagaoka 1997. IEEE (1997)

    Google Scholar 

  19. Xie, D.M., Qu, D.K., Xu, F.: Design of H-infinity feedback controller and IP-position controller of PMSM servo system. IEEE (2005)

    Google Scholar 

  20. Lin, F.J., Lin, Y.S.: A robust pm synchronous motor drive with adaptive uncertainty observer. IEEE Trans. Energy Conversion (1999)

    Google Scholar 

  21. Zhang, H., Xu, H., Fang, C., Xiong, C.: Design of a novel speed controller for direct-drive permanent magnet synchronous motor based on reduced-order load torque observer. In: Asia-pacific IEEE Transportation Electrification Conference & Expo, pp. 1–6. IEEE (2017)

    Google Scholar 

  22. Xinhua, G., Xuhui, W., Feng, Z., Xingming, Z.: A new IP speed controller for permanent magnet synchronous motor based on electromagnetic torque feedback compensation. Chin. J. Electr. Eng. 27, 7–13 (2010). (in Chinese)

    Google Scholar 

  23. Mohamed, Ibrahim, A.R.: Adaptive self-tuning speed control for permanent-magnet synchronous motor drive with dead time. IEEE Trans. Energy Conversion 21, 855–862 (2006)

    Google Scholar 

  24. Xianqing, C., Liping, F., Yidong, Z.: Real-time IP controller based on neural network for permanent magnet synchronous motors. In: IEEE Conference on Industrial Electronics & Applications. IEEE (2009)

    Google Scholar 

  25. Lin, F.: A PM synchronous servo motor drive with an on-line trained fuzzy neural network controller. IEEE Trans. Energy Convers. 13, 319–325 (1998)

    Google Scholar 

  26. Abdellah, E.K., Zakaria, B., Lamyae, E., Abdelhadi, E., Zineb, K.: Neural Network IP-self-tuning controller for Induction Motor Drive. In: 2020 International Conference on Electrical and Information Technologies (ICEIT) (2020)

    Google Scholar 

  27. Hongjia, W., Ming, Y., Li, N., Dianguo, X.: Optimal design method of speed controller for permanent magnet AC servo system. J. Motor Control 16(002), 25–31 (2012). (in Chinese)

    Google Scholar 

  28. Zerikat, M., Mechernene, A., Chekhroun, S.: Adaptive vector control of induction motor based on a Fuzzy Self-Tuning IP Speed Controller. In: 2016 5th International Conference on Systems and Control (ICSC). IEEE (2016)

    Google Scholar 

  29. Guo, Q., Han, Q., Qi, Y.: Neural network real-time IP position controller on-line design for permanent magnetic linear synchronous motor. In: 7th International Workshop on Advanced Motion Control. Proceedings. Maribor, Slovenia (2002)

    Google Scholar 

  30. Liaw, G.-M., Lin, F.-J.: A robust speed controller for induction motor drives. IEEE Trans. Industr. Electron. 41(3), 308–315 (1994)

    Article  Google Scholar 

  31. Ji, J.K., Sul, S.K.: DSP-based self-tuning IP speed controller with load torque compensation for rolling mill dc drive. IEEE Trans. Ind. Electron. 42(4), 382–386 (1995)

    Article  Google Scholar 

  32. Qingding, G., Yue, Z., Wei, G.: Online design of real-time IP position controller for permanent magnet linear synchronous servo system using neural network. J. Electrotechnics 14(6), 1–4 (1999). (in Chinese)

    Google Scholar 

  33. Lin, F.J.: Real-time ip position controller design with torque feedforward control for pm synchronous motor. IEEE Trans Ind. Electron. 44(3), 398–407 (1997)

    Article  Google Scholar 

  34. Li, Z., Zhang, W., Gang, L., Wang, B., Zhang, Y.: A novel Integral-Proportional (I-P) speed controller in PMSM motor drive. IEEE (2015)

    Google Scholar 

  35. Jun, W., Jian, X.: Adaptive neural network IP position controller for permanent magnet synchronous motor. J. Motor Control 06, 525–528 (2005). (in Chinese)

    Google Scholar 

  36. Hongru, L., Shusheng, G.: PMSM neural network real-time IP position control. J. Northeast Univ. 02, 114–117 (2003). (in Chinese)

    Google Scholar 

  37. Li, Z., Zhang, W., Liu, G., Wang, B., Zhang, Y.: A novel Integral-Proportional (I-P) speed controller in PMSM motor drive. In: Proceeding of the 11th World Congress on Intelligent Control and Automation, Shenyang, China (2014)

    Google Scholar 

  38. Hui, H., Yuefei, Z., Chuang, L., Jie, Z.: A variable structure PI controller for speed loop of permanent magnet synchronous motor. J. Electrotech. 30(012), 237–242 (2015). (in Chinese)

    Google Scholar 

  39. Jinggang, Z.: Two Degree of Freedom Control. Electronic Industry Press (2012). (in Chinese)

    Google Scholar 

  40. Pan, Z., Dong, F., Zhao, J., Wang, L., Wang, H., Feng, Y.: Combined resonant controller and two-degree-of-freedom pid controller for pmslm current harmonics suppression. IEEE Trans. Ind. Electron. 65, 7558–7568 (2018)

    Google Scholar 

  41. Guopo, L., Jiashen, L.: Simplified two degree of freedom practical PID controller. Metallurgical Autom. 000 (006), 39–41 (1994). (in Chinese)

    Google Scholar 

  42. Weihong, W., Jinggang, Z.: Overview of two degree of freedom control methods. Electr. Autom. 06, 4–7 (2001). (in Chinese)

    Google Scholar 

  43. Low, K.S., Deng, Y.Z., Guo, X.L.: Two-degree-of-freedom control of a PMSM drive without mechanical sensor. In: Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society, 1998, IECON 1998 (1998)

    Google Scholar 

  44. Hussain, H.A.: Tuning and performance evaluation of 2DOF PI current controllers for PMSM drives. IFAC Proc. Vol. 33(4), 91–96 (2000)

    Article  Google Scholar 

  45. Taguchi, H., Araki, M.: Two-degree-of-freedom pid controllers — their functions and optimal tuning. IFAC Proc. Vol. 33(4), 91–96 (2000)

    Article  Google Scholar 

  46. Xin, W., Hongrui, S.: Two degree of freedom PID control and application of integration process. Control. Eng. S1, 206–208 (2013). (in Chinese)

    Google Scholar 

  47. Chaoxia, L., Lixue, C.: An engineering implementation of two degree of freedom PID. J. Xi’an Univ. Sci. Technol. 26(3), 392–394 (2006). (in Chinese)

    Google Scholar 

  48. Hmidi, M.E., Ben Salem, I., Amraoui, L.E.: 2DOF PID for dynamic control of drive system hybrid vehicle electrical. In: International Conference on Green Energy Conversion Systems (GECS) (2017)

    Google Scholar 

  49. Viteckova, M., Vitecek, A.: 2DOF PID controller tuning for integrating plants. In: 17th International Carpathian Control Conference (ICCC). IEEE (2016)

    Google Scholar 

  50. Jiashen, L.: Practical two degree of freedom PID control. Automation instrument (11), 10–12,18. (in Chinese)

    Google Scholar 

  51. Sato, T., Inoue, A., Hirashima, Y.: Self-tuning two-degree-of-freedom pid compensator based on two-degree-of-freedom generalized minimum variance control. Department of Systems Engineering, Faculty of Engineering, Okayama University, Okayama, Japan, pp. 700–8530 (2002)

    Google Scholar 

  52. Ouyang, M., Liaw, C.M., Pan, C.T.: Model reduction by power decomposition and frequency response matching. IEEE Trans. Autom. Control 32(1), 59–62 (1987)

    Article  MATH  Google Scholar 

  53. Lin, F., Liaw, J., Shieh, C.M., et al. Y.S.: Robust two-degrees-of-freedom control for induction motor servodrive. IEEE Proc. Electric Power Appl. 142(2), 79–86 (1995)

    Google Scholar 

  54. Liaw, C.M., Chen, et al.: Quantitative design and implementation of PI-D controller with model-following response for motor drive. Electric Power Appl., IEE Proc. 145(2), 98–104 (1998)

    Google Scholar 

  55. Lin, F.J., Liaw, C.M.: Control of indirect field-oriented induction motor drives considering the effects of dead-time and parameter variations. IEEE Trans. Industr. Electron. 40(5), 486–495 (1993)

    Article  Google Scholar 

  56. Taguchi, H., Araki, M.: Two-degree-of-freedom PID controllers. In: IFAC Proceedings Volumes (2000)

    Google Scholar 

  57. Sato, T., Inoue, A., Hirashima, Y.: Self-tuning two-degree-of-freedom PID controller reducing the effect of disturbances. IEEE (2002)

    Google Scholar 

  58. Haber, R., Bars, R.: Equivalence of different two-degree-of-freedom control structures. In: 1999 European Control Conference (ECC). IEEE (1999)

    Google Scholar 

  59. Zhao, J., Jian, H., Xu, Y., Pan, Z.: Research of fuzzy two degree of freedom PID control for permanent magnet synchronous linear motor. IEEE (2015)

    Google Scholar 

  60. Tang, J., Fei, D., Zhao, J., Lu, S., Jian, H.: Disturbance suppression research in parallel dual permanent synchronous linear motors based on 2DOF PID controller. In: 2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA). IEEE (2016)

    Google Scholar 

  61. Gong, S.Q, Ding, X.Y, He, X.R, Ren, H.Y.: Research of PMSM controller based on 2DOF-PID algorithm. In: International Conference on Electrical Machines and Systems, 2007. ICEMS. IEEE (2007)

    Google Scholar 

  62. Zhiqiang, X., Wei, W., Zulian, Q.: Implementation of a two degree of freedom PID. Autom. Tech. Appl. 04, 17–19 (2003). (in Chinese)

    Google Scholar 

  63. Shuqiu, G., Qingding, G., Xiying, D., Haiyan, R.: Two degree of freedom PID control of PMSM. J. Shenyang Univ. Technol. 29(5), 542–545 (2007). (in Chinese)

    Google Scholar 

  64. Long, Y., Jianmin, Z., Mulan, W., Jian, L.: Target value filtered two degree of freedom PID control of permanent magnet linear synchronous motor. Micromotor 47(010), 62–65 (2014). (in Chinese)

    Google Scholar 

  65. Gogea, O.S., Pana, T.: Comparative analysis between the PI speed controller and two-degrees-of-freedom speed controller for induction motor drive. In: 2019 8th International Conference on Modern Power Systems (MPS). IEEE (2019)

    Google Scholar 

  66. Liu, X., Cao, H., Wei, W., Wu, J., Li, B., Huang, Y.: A Practical Precision Control Method Base on Linear Extended State Observer and Friction Feedforward of Permanent Magnet Linear Synchronous Motor. IEEE Access (2020)

    Google Scholar 

  67. El-Sousy, F.F.M., Khater, F.M.H., Ahmed, F.I.: Design of one-degree and two-degrees of freedom controllers for indirect field orientation control induction machine drive system. In: Canadian Conference on Electrical and Computer Engineering, 2001. IEEE (2001)

    Google Scholar 

  68. Jinggang, Z., Linsheng, L., Zhimei, C., Zhicheng, Z.: Internal model tuning method of two degree of freedom PID regulator. J. Instrum. 01, 28–30 (2002). (in Chinese)

    Google Scholar 

  69. Chen, G., Zhang, J., Zhao, Z.: A two-degree-of-freedom IMC parameters online intelligent tuning method. In: International Conference on Computational Aspects of Social Networks. IEEE Computer Society (2010)

    Google Scholar 

  70. Hui, F., Chuang, L., Yuefei, Z.: A completely decoupling two-degree-of-freedom controller for permanent magnetic synchronous motor speed-regulation system. In: 2016 Eleventh International Conference on Ecological Vehicles and Renewable Energies (EVER) (2016)

    Google Scholar 

  71. Gongwu, S., Hongwei, N., Yixin, S., Wei, N.: Research on two degree of freedom IMC PID control of time-delay systems. Comput. Appl. Res. 31(008), 2357–2360 (2014). (in Chinese)

    Google Scholar 

  72. Sato, T., Araki, N., Konishi, Y.: Comparison of 2DOF GMVC-based PID control laws. In: 2013 International Conference on Advanced Mechatronic Systems (ICAMechS). IEEE (2013)

    Google Scholar 

  73. Yanxi, Y., Ding, L.: Optimal design of two degree of freedom PID controller based on fuzzy genetic algorithm. J. Instrum. 27(008), 868–872 (2006). (in Chinese)

    Google Scholar 

  74. Weihong, W., Jinggang, Z., Xiaoxing, L.: Parameter tuning of two degree of freedom PID regulator based on fuzzy logic. Syst. Eng. Electron. Technol., 845–847 (2003). (in Chinese)

    Google Scholar 

  75. Shuqiu, G., Xiying, D., Wei, W., Haiyan, R.: Application of a Self-tuning Two Degree of Freedom PID Controller Based on Fuzzy Inference for PMSM (2008)

    Google Scholar 

  76. Weihong, W., Jinggang, Z., Xiaoxing, L.: Two degree of freedom PID control based on neural network compensation. J. Motor Control 04, 324–327 (2002). (in Chinese)

    Google Scholar 

  77. Celik, H., Yigit, T.: Field-oriented control of the PMSM with 2-DOF PI controller tuned by using PSO. In: 2018 International Conference on Artificial Intelligence and Data Processing (IDAP) (2018)

    Google Scholar 

  78. Ziyun, W, Shaofeng, H., Qinggeng, C.: Parameter optimization and tuning of two degree of freedom PID controller based on distributed population genetic algorithm. Industrial instrument and automation device, (01): 7–9 + 38 (2008). (in Chinese)

    Google Scholar 

  79. Peng, C.: Research on anti-interference control method based on disturbance observer. Jiangnan University (2020). (in Chinese)

    Google Scholar 

  80. Scalcon, F.P., Gabbi, T.S., Vieira, R.P., Gründling, H.A.: Decoupled vector control based on disturbance observer applied to the synchronous reluctance motor. In: 2019 21st European Conference on Power Electronics and Applications (EPE ‘19 ECCE Europe). IEEE (2019)

    Google Scholar 

  81. Zhou, X., Li, S.: On friction and disturbance-compensation based control design for PMSM servo system. In: Proceedings of the 29th Chinese Control Conference. IEEE (2010)

    Google Scholar 

  82. Youxian, S.: Application of modern control theory in chemical process -- Design and application of disturbance observer. Chemical automation and instrumentation, (12): 4–8+33 (1981). (in Chinese)

    Google Scholar 

  83. Kim, B.K., Wan, K.C.: Advanced design of disturbance observer for high performance motion control systems. In: American Control Conference, 2002. Proceedings of the 2002. IEEE (2002)

    Google Scholar 

  84. Schrijver, E., Johannes, D.V.: Disturbance observers for rigid mechanical systems: equivalence, stability, and design. J. Dyn. Syst. Meas. Contr. 124(4), 539–548 (2002)

    Article  Google Scholar 

  85. Umeno, T., Hori, Y.: Robust speed control of DC servomotors using modern two degrees-of-freedom controller design. IEEE Trans. Industr. Electron. 38(5), 363–368 (2002)

    Article  Google Scholar 

  86. Shim, H., Jo, N.H.: An almost necessary and sufficient condition for robust stability of closed-loop systems with disturbance observer. Automatica 45(1), 296–299 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  87. Sun, J.K., Li, S.H.: Disturbance observer based iterative learning control method for a class of systems subject to mismatched disturbances. Trans. Inst. Meas. Control. 39(11), 1749–1760 (2017)

    Article  Google Scholar 

  88. Endo, S., Tomizuka, M., Hori, Y.: Robust digital tracking controller design for high-speed positioning systems. In: 1993 American Control Conference (1993)

    Google Scholar 

  89. Anoop, S., Nandagopal, J.L.: Analysis of disturbance observer based position control system. In: 2016 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT). IEEE (2017)

    Google Scholar 

  90. Wang, Y., Mei, Z., Wang, R.: The stability analysis of the position control system with disturbance observer for induction machine drive. In: 2008 IEEE International Symposium on Industrial Electronics, Cambridge, UK (2008)

    Google Scholar 

  91. Huang, W., Liu, C., Hsu, P., Yeh, S.: Precision control and compensation of servomotors and machine tools via the disturbance observer. IEEE Trans. Industr. Electron. 57(1), 420–429 (2009)

    Article  Google Scholar 

  92. Luna, L., Garrido, R.: On the equivalence between P+DOB and set point weighted PI controllers for velocity control of servodrives under load disturbances. 2018 Congreso Mexicano de Robótica (COMRob), Ensenada, Mexico (2018)

    Google Scholar 

  93. Zuo, Y., Zhu, X., Quan, L., Zhang, C.: Active disturbance rejection controller for speed control of electrical drives using phase-locking loop observer. IEEE Trans. Industr. Electron. 66(3), 1748–1759 (2019)

    Article  Google Scholar 

  94. Sarsembayev, B., Suleimenov, K., Do, T.D.: High- Order disturbance observer-based discrete-time PI-PI control system with anti-windup for PMSMs. IEEE Access (2017)

    Google Scholar 

  95. Sazawa, M., Ohishi, K., Katsura, S.: High speed positioning servo system using integrator correction of PI controller based on disturbance observer. In: Conference of the IEEE Industrial Electronics Society. IEEE (2009)

    Google Scholar 

  96. Kempf, C.J., Kobayashi, S.: Disturbance observer and feedforward design for a high-speed direct-drive positioning table. IEEE Trans. Control Syst. Technol. 7, 513–526 (1999)

    Google Scholar 

  97. Hong, K., Nam, K.: A load torque compensation scheme under the speed measurement delay. IEEE Trans. Industr. Electron. 45(2), 283–290 (1998)

    Article  Google Scholar 

  98. Li Ning, S., Jing, C., Dong Sheng, Q., Zhong Yi, C.: Research on linear motor control based on discrete disturbance observer. J. Mech. Eng. 12, 164–167 (2004). (in Chinese)

    Google Scholar 

  99. Renchao, M., Gan, D.: Application of improved disturbance observer in servo system. Micro Special Motor 44(06), 70–73 (2016). (in Chinese)

    Google Scholar 

  100. Yeh, S.S., Hsu, P.L.: Perfectly matched feedback control and its integrated design for multiaxis motion systems. J. Dyn. Syst. Meas. Contr. 126(3), 547–557 (2004)

    Article  Google Scholar 

  101. Yang, K., Choi, Y., Chung, W.K.: On the tracking performance improvement of optical disk drive servo systems using error-based disturbance observer. IEEE Trans. Industr. Electron. 52(1), 270–279 (2005)

    Article  Google Scholar 

  102. Xianfang, S, Zhuhong, Z.: On line tracking of BLDCM position servo system based on three loop PI control. Measure. Control Technol. 28(10), 50–54 + 62 (2009). (in Chinese)

    Google Scholar 

  103. Ying, Z.: Magnetic resistance analysis and control strategy research of permanent magnet synchronous linear motor. Huazhong University of science and technology (2008). (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenyao Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, C., Zhao, T., Gui, X. (2022). Improved PID Control Strategy for Speed Loop of High Performance AC Servo System and Its Application. In: He, J., Li, Y., Yang, Q., Liang, X. (eds) The proceedings of the 16th Annual Conference of China Electrotechnical Society. Lecture Notes in Electrical Engineering, vol 891. Springer, Singapore. https://doi.org/10.1007/978-981-19-1532-1_27

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-1532-1_27

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-1531-4

  • Online ISBN: 978-981-19-1532-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics