Nothing Special   »   [go: up one dir, main page]

Skip to main content

Sleep Monitoring in Adults Using Wearables and Unobtrusive Technology

  • Chapter
  • First Online:
Wearable/Personal Monitoring Devices Present to Future

Abstract

Sleep is a complex physiological process that plays a fundamental role in maintaining homeostasis and overall health. It has an internal structure characterized by sleep stages, which is often affected by either the high demands of the current 24-h society or by different sleep disorders such as sleep apnea. These disturbances to the regular sleep structure have been strongly associated with reductions in cognitive and behavioral performance, attention deficit, depression, nocturia, memory loss, snoring, and cardiovascular diseases. Therefore, it is crucial to identify sleep problems in an early stage before the overall health is compromised in an irreversible way. Currently, sleep disorders are diagnosed using polysomnography (PSG), which is the gold-standard sleep test usually recorded in a sleep laboratory. This test is often associated with elevated costs and reduced comfort. With this in mind, many studies have focused on the development of wearables and unobtrusive technologies that can be used at home and that can monitor sleep during more than one single night. This chapter discusses unobtrusive state-of-the-art sensors and algorithms for sleep monitoring in adults, with a special focus on heart rate, respiration, and blood oxygenation monitoring.

M. Deviaene–D. Huysmans—These authors have equal contributions to the work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The EEG captures the electrical activity from the brain, commonly obtained from the scalp using surface electrodes.

  2. 2.

    The EOG records the electrical signal caused due to the opposite polarity between the front and back of the eye, which acts as a dipole.

  3. 3.

    The EMG records the electrical activity of the muscles.

  4. 4.

    The ECG records the electrical activity of the heart.

  5. 5.

    Tidal volume corresponds to the volume of air inspired/expired with each breathing cycle.

  6. 6.

    Time differences between consecutive R-peaks in the ECG.

  7. 7.

    During obstructive apneas, the respiratory effort signals from the thoracic and abdominal belts are often out of phase, and this phenomenon is called the thoracoabdominal paradox.

  8. 8.

    PALM is an acronym for the measured parameters for each of the four studied traits: Pcrit, arousal threshold, loop gain, and muscle responsiveness.

References

  1. Beddit. https://www.beddit.com/. [Accessed 3 Feb 2020]

  2. Bitbrain dry eeg. https://www.bitbrain.com/neurotechnology-products/dry-eeg. [Accessed 15 Jan 2020]

  3. Byteflies. https://www.byteflies.com/. [Accessed 3 Feb 2020]

  4. Dreem. https://dreem.com/en. [Accessed 15 Jan 2020]

  5. Muse. https://choosemuse.com/. [Accessed 15 Jan 2020]

  6. Neurovigil. https://neurovigil.com/. [Accessed 15 Jan 2020]

  7. Onera health. https://www.onerahealth.com/. [Accessed 21 Jan 2020]

  8. Sleep score labs. https://www.sleepscore.com/. [Accessed 21 Jan 2020]

  9. Sleep sheperd. https://sleepshepherd.com/. [Accessed 15 Jan 2020]

  10. Tatch health. https://www.tatchhealth.com/. [Accessed 21 Jan 2020]

  11. Abad DG (2009) Development of a capacitive bioimpedance measurement system. MS thesis

    Google Scholar 

  12. Al-Angari HM, Sahakian AV (2007) Use of sample entropy approach to study heart rate variability in obstructive sleep apnea syndrome. IEEE Trans Biomed Eng 54(10):1900–1904

    Article  Google Scholar 

  13. Aleksandrowicz A, Leonhardt S (2007) Wireless and non-contact ecg measurement system -the aachen smartchair-. Acta Polytech 47(4–5)

    Google Scholar 

  14. Alvarez D, Hornero R, Marcos JV, Wessel N, Penzel T, Glos M, Del Campo F (2013) Assessment of feature selection and classification approaches to enhance information from overnight oximetry in the context of apnea diagnosis. Int J Neural Syst 23(05):1350020

    Article  Google Scholar 

  15. American Association of Sleep Technologists: Sleep technology technical guideline. standard polysomnography (2012)

    Google Scholar 

  16. Ansari AH, De Wel O, Pillay K, Dereymaeker A, Jansen K, Van Huffel S, Naulaers G, De Vos M (2019) A convolutional neural network outperforming state-of-the-art sleep staging algorithms for both preterm and term infants. J Neural Eng

    Google Scholar 

  17. Atallah L, Serteyn A, Meftah M, Schellekens M, Vullings R, Bergmans J, Osagiator A, Oetomo SB (2014) Unobtrusive ecg monitoring in the nicu using a capacitive sensing array. Physiol Meas 35(5):895

    Article  Google Scholar 

  18. Baek HJ, Chung GS, Kim KK, Park KS (2011) A smart health monitoring chair for nonintrusive measurement of biological signals. IEEE Trans Inf Technol Biomed 16(1):150–158

    Article  Google Scholar 

  19. Baek HJ, Kim JS, Kim KK, Park KS (2008) System for unconstrained ecg measurement on a toilet seat using capacitive coupled electrodes: the efficacy and practicality. In: 2008 30th annual international conference of the IEEE engineering in medicine and biology society. IEEE, pp 2326–2328

    Google Scholar 

  20. Bassetti C, Dogas Z, Peigneux P (2014) Sleep medicine textbook. European sleep research society (2014)

    Google Scholar 

  21. Bates A, Ling MJ, Mann J, Arvind DK (2010) Respiratory rate and flow waveform estimation from tri-axial accelerometer data. In: 2010 international conference on body sensor networks. IEEE, pp 144–150

    Google Scholar 

  22. Beattie Z, Oyang Y, Statan A, Ghoreyshi A, Pantelopoulos A, Russell A, Heneghan C (2017) Estimation of sleep stages in a healthy adult population from optical plethysmography and accelerometer signals. Physiol Meas 38(11):1968

    Article  Google Scholar 

  23. Beddr: Sleep tuner. https://www.beddrsleep.com/how-it-works. [Accessed 21 Jan 2020]

  24. Behar J, Roebuck A, Shahid M, Daly J, Hallack A, Palmius N, Stradling J, Clifford GD (2014) Sleepap: an automated obstructive sleep apnoea screening application for smartphones. IEEE J Biomed Health Inform 19(1):325–331

    Article  Google Scholar 

  25. Benjafield AV, Ayas NT, Eastwood PR, Heinzer R, Ip MS, Morrell MJ, Nunez CM, Patel SR, Penzel T, Pépin JL et al (2019) Estimation of the global prevalence and burden of obstructive sleep apnoea: a literature-based analysis. Lancet Respir Med 7(8):687–698

    Article  Google Scholar 

  26. Berry RB, Budhiraja R, Gottlieb DJ, Gozal D, Iber C, Kapur VK, Marcus CL, Mehra R, Parthasarathy S, Quan SF et al (2012) Rules for scoring respiratory events in sleep: update of the 2007 aasm manual for the scoring of sleep and associated events. J Clin Sleep Med 8(05):597–619

    Article  Google Scholar 

  27. Bianchi MT (2018) Sleep devices: wearables and nearables, informational and interventional, consumer and clinical. Metabolism 84:99–108

    Article  Google Scholar 

  28. Bleichner MG, Debener S (2017) Concealed, unobtrusive ear-centered eeg acquisition: ceegrids for transparent eeg. Front Hum Neurosci 11:163

    Article  Google Scholar 

  29. Bsoul M, Minn H, Tamil L (2010) Apnea medassist: real-time sleep apnea monitor using single-lead ecg. IEEE Trans Inf Technol Biomed 15(3):416–427

    Article  Google Scholar 

  30. Camm AJ, Malik M, Bigger JT, Breithardt G, Cerutti S, Cohen RJ, Coumel P, Fallen EL, Kennedy HL, Kleiger R et al (1996) Heart rate variability: standards of measurement, physiological interpretation and clinical use. Circulation 93:1043–1065

    Article  Google Scholar 

  31. Casal R, Di Persia LE, Schlotthauer G (2019) Sleep-wake stages classification using heart rate signals from pulse oximetry. Heliyon 5(10):e02529

    Google Scholar 

  32. Castaneda D, Esparza A, Ghamari M, Soltanpur C, Nazeran H (2018) A review on wearable photoplethysmography sensors and their potential future applications in health care. Int J Biosens Bioelectron 4(4):195

    Google Scholar 

  33. Castro I, Varon C, Moeyersons J, Gomez AV, Morales J, Deviaene M, Torfs T, Van Huffel S, Puers R, Van Hoof C (2019) Data quality assessment of capacitively-coupled ecg signals. In: Proceedings of the 2019 computing in cardiology conference (CinC), Singapore, pp 8–11

    Google Scholar 

  34. Castro I, Varon C, Torfs T, Van Huffel S, Puers R, Van Hoof C (2018) Evaluation of a multichannel non-contact ecg system and signal quality algorithms for sleep apnea detection and monitoring. Sensors 18(2):577

    Article  Google Scholar 

  35. Castro ID, Mercuri M, Torfs T, Lorato I, Puers R, Van Hoof C (2018) Sensor fusion of capacitively coupled ecg and continuous-wave doppler radar for improved unobtrusive heart rate measurements. IEEE J Emerg Select Top Circuits Syst 8(2):316–328

    Article  Google Scholar 

  36. Castro ID, Morariu R, Torfs T, Van Hoof C, Puers R (2016) Robust wireless capacitive ecg system with adaptive signal quality and motion artifact reduction. In: 2016 IEEE international symposium on medical measurements and applications (MeMeA). IEEE, pp 1–6

    Google Scholar 

  37. Castro ID, Patel A, Torfs T, Puers R, Van Hoof C (2019) Capacitive multi-electrode array with real-time electrode selection for unobtrusive ecg and bioz monitoring. In: 2019 41st annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE, pp 5621–5624

    Google Scholar 

  38. Chamadiya B, Heuer S, Hofmann U, Wagner M (2009) Towards a capacitively coupled electrocardiography system for car seat integration. In: 4th European conference of the international federation for medical and biological engineering. Springer, pp 1217–1221

    Google Scholar 

  39. de Chazal P, Penzel T, Heneghan C (2004) Automated detection of obstructive sleep apnoea at different time scales using the electrocardiogram. Physiol Meas 25(4):967–983

    Article  Google Scholar 

  40. Chesson AL Jr, Berry RB, Pack A (2003) Practice parameters for the use of portable monitoring devices in the investigation of suspected obstructive sleep apnea in adults. Sleep 26(7):907–913

    Article  Google Scholar 

  41. Chung KY, Song K, Shin K, Sohn J, Cho SH, Chang JH (2017) Noncontact sleep study by multi-modal sensor fusion. Sensors 17(7):1685

    Google Scholar 

  42. Ciołek M, Niedźwiecki M, Sieklicki S, Drozdowski J, Siebert J (2014) Automated detection of sleep apnea and hypopnea events based on robust airflow envelope tracking in the presence of breathing artifacts. IEEE J Biomed Health Inform 19(2):418–429

    Article  Google Scholar 

  43. Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Measur 20(1):37–46

    Article  Google Scholar 

  44. Collop NA, Tracy SL, Kapur V, Mehra R, Kuhlmann D, Fleishman SA, Ojile JM (2011) Obstructive sleep apnea devices for out-of-center (ooc) testing: technology evaluation. J Clin Sleep Med 7(05):531–548

    Article  Google Scholar 

  45. Compumedics: Sompte sleep monitor. https://www.compumedics.com.au/products/somte/. [Accessed 15 Jan 2020]

  46. Czaplik M, Eilebrecht B, Walocha R, Walter M, Schauerte P, Leonhardt S, Rossaint R (2012) The reliability and accuracy of a noncontact electrocardiograph system for screening purposes. Anesthesia Analgesia 114(2):322–327

    Article  Google Scholar 

  47. De Chazal P, Fox N, O’hare E, Heneghan C, Zaffaroni A, Boyle P, Smith S, O’connell C, McNicholas WT (2011) Sleep/wake measurement using a non-contact biomotion sensor. J Sleep Research 20(2):356–366

    Google Scholar 

  48. De Chazal P, Heneghan C, Sheridan E, Reilly R, Nolan P, O’Malley M (2003) Automated processing of the single-lead electrocardiogram for the detection of obstructive sleep apnoea. IEEE Trans Biomed Eng 50(6):686–696

    Article  Google Scholar 

  49. Dean DA, Goldberger AL, Mueller R, Kim M, Rueschman M, Mobley D, Sahoo SS, Jayapandian CP, Cui L, Morrical MG et al (2016) Scaling up scientific discovery in sleep medicine: the national sleep research resource. Sleep 39(5):1151–1164

    Article  Google Scholar 

  50. Debener S, Emkes R, De Vos M, Bleichner M (2015) Unobtrusive ambulatory eeg using a smartphone and flexible printed electrodes around the ear. Sci Rep 5:16743

    Article  Google Scholar 

  51. Dement W, Kleitman N (1957) Cyclic variations in eeg during sleep and their relation to eye movements, body motility, and dreaming. Electroencephalogr Clin Neurophysiol 9(4):673–690

    Article  Google Scholar 

  52. Deviaene M, Borzée P, van Gilst M, van Dijk J, Overeem S, Buyse B, Testelmans D, Van Huffel S, Varon C (2020) Multilevel interval coded scoring to assess the cardiovascular status of sleep apnea patients using oxygen saturation markers. Accepted for publication in IEEE Transactions on Biomedical Engineering, available in early access

    Google Scholar 

  53. Deviaene M, Lázaro J, Huysmans D, Testelmans D, Buyse B, Van Huffel S, Varon C (2018) Sleep apnea detection using pulse photoplethysmography. In: 2018 computing in cardiology conference (CinC), vol 45. IEEE, pp 1–4

    Google Scholar 

  54. Deviaene M, Testelmans D, Buyse B, Borzée P, Van Huffel S, Varon C (2018) Automatic screening of sleep apnea patients based on the spo 2 signal. IEEE J Biomed Health Inform 23(2):607–617

    Article  Google Scholar 

  55. Devot S, Dratwa R, Naujokat E (2010) Sleep/wake detection based on cardiorespiratory signals and actigraphy. In: 2010 annual international conference of the IEEE engineering in medicine and biology. IEEE, pp 5089–5092

    Google Scholar 

  56. Domingues A, Paiva T, Sanches JM (2014) Hypnogram and sleep parameter computation from activity and cardiovascular data. IEEE Trans Biomed Eng 61(6):1711–1719

    Article  Google Scholar 

  57. Douglas N, White D, Pickett CK, Weil J, Zwillich C (1982) Respiration during sleep in normal man. Thorax 37(11):840–844

    Article  Google Scholar 

  58. Eckert DJ (2018) Phenotypic approaches to obstructive sleep apnoea-new pathways for targeted therapy. Sleep Med Rev 37:45–59

    Article  Google Scholar 

  59. emfit: Emfit sleep apnea monitor. https://www.emfit.com/emfit-qs-for-diagnosing-sleep-apnea. [Accessed 3 Feb 2020]

  60. Faust O, Acharya UR, Ng E, Fujita H (2016) A review of ecg-based diagnosis support systems for obstructive sleep apnea. J Mech Med Biol 16(01):1640004

    Article  Google Scholar 

  61. Faust O, Razaghi H, Barika R, Ciaccio EJ, Acharya UR (2019) A review of automated sleep stage scoring based on physiological signals for the new millennia. Computer methods and programs in biomedicine

    Google Scholar 

  62. Flemons WW, Littner MR, Rowley JA, Gay P, Anderson WM, Hudgel DW, McEvoy RD, Loube DI (2003) Home diagnosis of sleep apnea: a systematic review of the literature: an evidence review cosponsored by the american academy of sleep medicine, the american college of chest physicians, and the american thoracic society. Chest 124(4):1543–1579

    Article  Google Scholar 

  63. Fonseca P, Aarts RM, Long X, Rolink J, Leonhardt S (2016) Estimating actigraphy from motion artifacts in ecg and respiratory effort signals. Physiol Meas 37(1):67–82

    Article  Google Scholar 

  64. Fonseca P, Den Teuling N, Long X, Aarts RM (2018) A comparison of probabilistic classifiers for sleep stage classification. Physiol Meas 39(5):aabbc2. https://doi.org/10.1088/1361-6579/aabbc2

  65. Fonseca P, Long X, Radha M, Haakma R, Aarts RM, Rolink J (2015) Sleep stage classification with ecg and respiratory effort. Physiol Meas 36(10):2027

    Article  Google Scholar 

  66. Fonseca P, Weysen T, Goelema MS, Møst EI, Radha M, Lunsingh Scheurleer C, van den Heuvel L, Aarts RM (2017) Validation of photoplethysmography-based sleep staging compared with polysomnography in healthy middle-aged adults. Sleep 40(7):zsx097

    Google Scholar 

  67. Gil E, Vergara JM, Laguna P (2008) Detection of decreases in the amplitude fluctuation of pulse photoplethysmography signal as indication of obstructive sleep apnea syndrome in children. Biomed Signal Process Control 3(3):267–277

    Article  Google Scholar 

  68. Goldberger AL, Amaral LA, Glass L, Hausdorff JM, Ivanov PC, Mark RG, Mietus JE, Moody GB, Peng CK, Stanley HE (2000) Physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals. Circulation 101(23):e215–e220

    Article  Google Scholar 

  69. Goverdovsky V, Looney D, Kidmose P, Mandic DP (2015) In-ear eeg from viscoelastic generic earpieces: Robust and unobtrusive 24/7 monitoring. IEEE Sens J 16(1):271–277

    Article  Google Scholar 

  70. Guilleminault C, Winkle R, Connolly S, Melvin K, Tilkian A (1984) Cyclical variation of the heart rate in sleep apnoea syndrome: Mechanisms, and usefulness of 24 h electrocardiography as a screening technique. The Lancet 323(8369):126–131

    Article  Google Scholar 

  71. Harper RM, Schechtman VL, Kluge KA (1987) Machine classification of infant sleep state using cardiorespiratory measures. Electroencephal Clin Neurophysiol 67(4):379–387. https://doi.org/10.1016/0013-4694(87)90126-X. http://www.sciencedirect.com/science/article/pii/001346948790126X

  72. Huysmans D, Borzée P, Testelmans D, Buyse B, Willemen T, Huffel SV, Varon C (2019) Evaluation of a commercial ballistocardiography sensor for sleep apnea screening and sleep monitoring. Sensors 19(9):2133

    Article  Google Scholar 

  73. Hwang SH, Lee YJ, Jeong DU, Park KS (2016) Unconstrained sleep stage estimation based on respiratory dynamics and body movement. Methods Inf Med 55(06):545–555

    Article  Google Scholar 

  74. Hwang SH, Lee YJ, Jeong DU, Park KS et al (2016) Oxygen desaturation index estimation through unconstrained cardiac sympathetic activity assessment using three ballistocardiographic systems. Respiration 92(2):90–97

    Article  Google Scholar 

  75. Inc B (2020) Mcot patch. https://www.myheartmonitor.com/device/mcot-patch/. [Accessed 3 Feb 2020]

  76. Ishida S, Shiozawa N, Fujiwara Y, Makikawa M (2007) Electrocardiogram measurement during sleep with wearing clothes using capacitively-coupled electrodes. In: 2007 29th annual international conference of the IEEE engineering in medicine and biology society. IEEE, pp 2647–2650

    Google Scholar 

  77. Joshi R, Bierling BL, Long X, Weijers J, Feijs L, Van Pul C, Andriessen P (2018) A ballistographic approach for continuous and non-obtrusive monitoring of movement in neonates. IEEE J Trans Eng Health Med 6:1–10

    Article  Google Scholar 

  78. Kagawa M, Tojima H, Matsui T (2016) Non-contact diagnostic system for sleep apnea-hypopnea syndrome based on amplitude and phase analysis of thoracic and abdominal doppler radars. Med Biol Eng Comput 54(5):789–798

    Article  Google Scholar 

  79. Kelly JM, Strecker RE, Bianchi MT (2012) Recent developments in home sleep-monitoring devices. ISRN Neurol 2012

    Google Scholar 

  80. Kemp B, Janssen AJ, Van Der Kamp B (1998) Body position can be monitored in 3d using miniature accelerometers and earth-magnetic field sensors. Electroencephal Clin Neurophysiol/Electromyography Motor Control 109(6):484–488

    Google Scholar 

  81. Kemp B, Zwinderman AH, Tuk B, Kamphuisen HA, Oberye JJ (2000) Analysis of a sleep-dependent neuronal feedback loop: the slow-wave microcontinuity of the eeg. IEEE Trans Biomed Eng 47(9):1185–1194

    Article  Google Scholar 

  82. Kidmose P, Looney D, Jochumsen L, Mandic DP (2013) Ear-eeg from generic earpieces: A feasibility study. In: 2013 35th annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE, pp 543–546

    Google Scholar 

  83. Kim KK, Lim YK, Park KS (2004) The electrically noncontacting ecg measurement on the toilet seat using the capacitively-coupled insulated electrodes. In: The 26th annual international conference of the IEEE engineering in medicine and biology society, vol 1. IEEE, pp 2375–2378

    Google Scholar 

  84. Koley BL, Dey D (2013) Automatic detection of sleep apnea and hypopnea events from single channel measurement of respiration signal employing ensemble binary svm classifiers. Measurement 46(7):2082–2092

    Article  Google Scholar 

  85. Kortelainen JM, Mendez MO, Bianchi AM, Matteucci M, Cerutti S (2010) Sleep staging based on signals acquired through bed sensor. IEEE Trans Inf Technol Biomed 14(3):776–785

    Article  Google Scholar 

  86. Kranjec J, Beguš S, Drnovšek J, Geršak G (2013) Novel methods for noncontact heart rate measurement: A feasibility study. IEEE Trans Instrum Meas 63(4):838–847

    Article  Google Scholar 

  87. Kurihara Y, Watanabe K (2012) Sleep-stage decision algorithm by using heartbeat and body-movement signals. IEEE Trans Syst, Man, Cybern-Part A: Syst Humans 42(6):1450–1459

    Article  Google Scholar 

  88. Lázaro J, Gil E, Bailón R, Mincholé A, Laguna P (2013) Deriving respiration from photoplethysmographic pulse width. Med Biol Eng Comput 51(1–2):233–242

    Article  Google Scholar 

  89. Lee HJ, Hwang SH, Yoon HN, Lee WK, Park KS (2015) Heart rate variability monitoring during sleep based on capacitively coupled textile electrodes on a bed. Sensors 15(5):11295–11311

    Article  Google Scholar 

  90. Leonhardt S, Aleksandrowicz A (2008) Non-contact ecg monitoring for automotive application. In: 2008 5th international summer school and symposium on medical devices and biosensors. IEEE, pp 183–185

    Google Scholar 

  91. Li C, Cummings J, Lam J, Graves E, Wu W (2009) Radar remote monitoring of vital signs. IEEE Microwave Mag 10(1):47–56

    Article  Google Scholar 

  92. Li C, Lubecke VM, Boric-Lubecke O, Lin J (2013) A review on recent advances in doppler radar sensors for noncontact healthcare monitoring. IEEE Trans Microw Theory Tech 61(5):2046–2060

    Article  Google Scholar 

  93. Li Q, Li Q, Liu C, Shashikumar SP, Nemati S, Clifford GD (2018) Deep learning in the cross-time frequency domain for sleep staging from a single-lead electrocardiogram. Physiol Meas 39(12):124005

    Google Scholar 

  94. Lim YG, Hong KH, Kim KK, Shin JH, Lee SM, Chung GS, Baek HJ, Jeong DU, Park KS (2011) Monitoring physiological signals using nonintrusive sensors installed in daily life equipment. Biomed Eng Lett 1(1):11–20

    Article  Google Scholar 

  95. Lim YG, Kim KK, Park KS (2007) Ecg recording on a bed during sleep without direct skin-contact. IEEE Trans Biomed Eng 54(4):718–725

    Article  Google Scholar 

  96. Lim YG, Lee JS, Lee SM, Lee HJ, Park KS (2014) Capacitive measurement of ecg for ubiquitous healthcare. Ann Biomed Eng 42(11):2218–2227

    Article  Google Scholar 

  97. Lim YK, Kim KK, Park KS (2004) The ecg measurement in the bathtub using the insulated electrodes. In: The 26th annual international conference of the IEEE engineering in medicine and biology society, vol 1. IEEE, pp 2383–2385

    Google Scholar 

  98. Lisenby M, Richardson P, Welch A (1976) Detection of cyclic sleep phenomena using instantaneous heart rate. Electroencephalogr Clin Neurophysiol 40(2):169–177

    Article  Google Scholar 

  99. Littner M, Kushida CA, Anderson WM, Bailey D, Berry RB, Davila DG, Hirshkowitz M, Kapen S, Kramer M, Loube D, Wise M, Johnson SF (2003) Practice parameters for the role of actigraphy in the study of sleep and circadian rhythms: an update for 2002. Sleep 26(3):337–341. https://doi.org/10.1093/sleep/26.3.337

  100. Long X, Fonseca P, Foussier J, Haakma R, Aarts RM (2013) Sleep and wake classification with actigraphy and respiratory effort using dynamic warping. IEEE J Biomed Health Inform 18(4):1272–1284

    Article  Google Scholar 

  101. Long X, Yang J, Weysen T, Haakma R, Foussier J, Fonseca P, Aarts RM (2014) Measuring dissimilarity between respiratory effort signals based on uniform scaling for sleep staging. Physiol Meas 35(12):2529

    Article  Google Scholar 

  102. Loomis AL, Harvey EN, Hobart GA III (1938) Distribution of disturbance-patterns in the human electroencephalogram, with special reference to sleep. J Neurophysiol 1(5):413–430

    Article  Google Scholar 

  103. Macías R, García M, Ramos J, Bragos R, Fernández M (2013) Ventilation and heart rate monitoring in drivers using a contactless electrical bioimpedance system. J Phys: Conf Ser, 434, 012047. IOP Publishing

    Google Scholar 

  104. Mancia G (1993) Autonomic modulation of the cardiovascular system during sleep

    Google Scholar 

  105. Matar G, Lina JM, Carrier J, Kaddoum G (2018) Unobtrusive sleep monitoring using cardiac, breathing and movements activities: an exhaustive review. IEEE Access 6:45129–45152

    Article  Google Scholar 

  106. Matsuda T, Makikawa M (2008) Ecg monitoring of a car driver using capacitively-coupled electrodes. In: 2008 30th annual international conference of the IEEE engineering in medicine and biology society. IEEE, pp 1315–1318

    Google Scholar 

  107. MBrainTrain: ceegrids. https://mbraintrain.com/concealed-eeg/. [Accessed 3 Feb 2020]

  108. McDonald NJ, Anumula HA, Duff E, Soussou W (2012) Noncontact ecg system for unobtrusive long-term monitoring. In: 2012 annual international conference of the IEEE engineering in medicine and biology society. IEEE, pp 1614–1618

    Google Scholar 

  109. Mendonça F, Mostafa SS, Ravelo-García AG, Morgado-Dias F, Penzel T (2018) Devices for home detection of obstructive sleep apnea: A review. Sleep Med Rev 41:149–160

    Article  Google Scholar 

  110. Mendonça F, Mostafa SS, Ravelo-García AG, Morgado-Dias F, Penzel T (2018) A review of obstructive sleep apnea detection approaches. IEEE J Biomed Health Inform 23(2):825–837

    Article  Google Scholar 

  111. Mercuri M, Lorato IR, Liu YH, Wieringa F, Van Hoof C, Torfs T (2019) Vital-sign monitoring and spatial tracking of multiple people using a contactless radar-based sensor. Nat Electron 2(6):252–262

    Article  Google Scholar 

  112. Migliorini M, Bianchi AM, Nisticò D, Kortelainen J, Arce-Santana E, Cerutti S, Mendez MO (2010) Automatic sleep staging based on ballistocardiographic signals recorded through bed sensors. In: 2010 annual international conference of the IEEE engineering in medicine and biology, pp 3273–3276. https://doi.org/10.1109/IEMBS.2010.5627217

  113. Mikkelsen KB, Tabar YR, Kappel SL, Christensen CB, Toft HO, Hemmsen MC, Rank ML, Otto M, Kidmose P (2019) Accurate whole-night sleep monitoring with dry-contact ear-eeg. Sci Rep 9(1):1–12

    Article  Google Scholar 

  114. Molinari S, Foulkes D (1969) Tonic and phasic events during sleep: psychological correlates and implications. Percept Mot Skills 29(2):343–368. https://doi.org/10.2466/pms.1969.29.2.343 PMID: 4310916

    Article  Google Scholar 

  115. Moody G, Mark R, Goldberger A, Penzel T (2000) Stimulating rapid research advances via focused competition: The computers in cardiology challenge 2000. In: Computers in cardiology 2000, vol 27 (Cat. 00CH37163). IEEE, pp 207–210

    Google Scholar 

  116. Moody GB, Mark RG, Zoccola A, Mantero S (1985) Derivation of respiratory signals from multi-lead ecgs. Comput Cardiol 12(1985):113–116

    Google Scholar 

  117. Morales JF, Varon C, Deviaene M, Borzée P, Testelmans D, Buyse B, Van Huffel S (2017) Sleep apnea hypopnea syndrome classification in spo 2 signals using wavelet decomposition and phase space reconstruction. In: 2017 IEEE 14th international conference on wearable and implantable body sensor networks (BSN). IEEE, pp 43–46

    Google Scholar 

  118. Morales Tellez JF, Deviaene M, Milagro J, Testelmans D, Buyse B, Willems R, Orini M, Van Huffel S, Bailón R, Varon C (2019) Evaluation of methods to characterize the change of the respiratory sinus arrhythmia with age in sleep apnea patients. In: Proceedings of EMBC. IEEE (2019)

    Google Scholar 

  119. Moret-Bonillo V, Alvarez-Estévez D, Fernández-Leal A, Hernández-Pereira E (2014) Intelligent approach for analysis of respiratory signals and oxygen saturation in the sleep apnea/hypopnea syndrome. Open Med Inform J 8:1

    Article  Google Scholar 

  120. Morgenthaler T, Alessi C, Friedman L, Owens J, Kapur V, Boehlecke B, Brown T, Chesson A Jr, Coleman J, Lee-Chiong T et al (2007) Practice parameters for the use of actigraphy in the assessment of sleep and sleep disorders: an update for 2007. Sleep 30(4):519–529

    Article  Google Scholar 

  121. Mostafa SS, Mendonça F, Ravelo-García AG, Morgado-Dias F (2019) A systematic review of detecting sleep apnea using deep learning. Sensors 19(22):4934

    Article  Google Scholar 

  122. Mousavi S, Afghah F, Acharya UR (2019) Sleepeegnet: automated sleep stage scoring with sequence to sequence deep learning approach. PLoS ONE 14(5):e0216456

    Google Scholar 

  123. Obeid D, Sadek S, Zaharia G, El Zein G (2010) Multitunable microwave system for touchless heartbeat detection and heart rate variability extraction. Microw Opt Technol Lett 52(1):192–198

    Article  Google Scholar 

  124. Oksenberg A, Khamaysi I, Silverberg DS, Tarasiuk A (2000) Association of body position with severity of apneic events in patients with severe nonpositional obstructive sleep apnea. Chest 118(4):1018–1024

    Article  Google Scholar 

  125. Papini GB, Fonseca P, Margarito J, van Gilst MM, Overeem S, Bergmans JW, Vullings R (2018) On the generalizability of ecg-based obstructive sleep apnea monitoring: merits and limitations of the apnea-ecg database. In: 2018 40th annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE, pp 6022–6025

    Google Scholar 

  126. Paquet J, Kawinska A, Carrier J (2007) Wake detection capacity of actigraphy during sleep. Sleep 30(10):1362–1369

    Article  Google Scholar 

  127. Penzel T, Moody GB, Mark RG, Goldberger AL, Peter JH (2000) The apnea-ecg database. In: Computers in cardiology 2000, vol 27 (Cat. 00CH37163). IEEE, pp 255–258

    Google Scholar 

  128. Petkie DT, Benton C, Bryan E (2009) Millimeter wave radar for remote measurement of vital signs. In: 2009 IEEE radar conference. IEEE, pp 1–3

    Google Scholar 

  129. Pinheiro E, Postolache O, Girão P (2012) A practical approach concerning the capacitive acquisition of the electrocardiogram in a moving wheelchair. In: Proceedings of the XX IMEKO world congress

    Google Scholar 

  130. Quan SF, Howard BV, Iber C, Kiley JP, Nieto FJ, O’Connor GT, Rapoport DM, Redline S, Robbins J, Samet JM et al (1997) The sleep heart health study: design, rationale, and methods. Sleep 20(12):1077–1085

    Google Scholar 

  131. Radha M, Fonseca P, Moreau A, Ross M, Cerny A, Anderer P, Long X, Aarts RM (2019) Sleep stage classification from heart-rate variability using long short-term memory neural networks. Sci Rep 9(1):1–11

    Article  Google Scholar 

  132. Rechtschaffen A, Kales A (1968) A manual of standardized terminology, techniques, and scoring system for sleep stages for human subjects. Natl Inst Health 204

    Google Scholar 

  133. Redmond SJ, de Chazal P, O’Brien C, Ryan S, McNicholas WT, Heneghan C (2007) Sleep staging using cardiorespiratory signals. Somnologie-Schlafforschung und Schlafmedizin 11(4):245–256

    Article  Google Scholar 

  134. Redmond SJ, Heneghan C (2006) Cardiorespiratory-based sleep staging in subjects with obstructive sleep apnea. IEEE Trans Biomed Eng 53(3):485–496

    Article  Google Scholar 

  135. ResMed: S+ sleep monitor. https://splus.resmed.com/. [Accessed 3 Feb 2020]

  136. Resonea: Drowzle pro. https://www.resonea.com/drowzle-pro/. [Accessed 21 Jan 2020]

  137. Richardson P (1967) The insulated electrode: a pasteless electrocardiographic technique. In: 20th Annual conference on engineering in medicine and biology, vol 9, pp 15–17

    Google Scholar 

  138. Roebuck A, Monasterio V, Gederi E, Osipov M, Behar J, Malhotra A, Penzel T, Clifford G (2013) A review of signals used in sleep analysis. Physiol Meas 35(1):R1

    Article  Google Scholar 

  139. Roehrs T, Zorick F, Wittig R, Conway W, Roth T (1989) Predictors of objective level of daytime sleepiness in patients with sleep-related breathing disorders. Chest 95(6):1202–1206

    Article  Google Scholar 

  140. Roomkham S, Lovell D, Cheung J, Perrin D (2018) Promises and challenges in the use of consumer-grade devices for sleep monitoring. IEEE Rev Biomed Eng 11:53–67

    Article  Google Scholar 

  141. Rosenberg RS, Van Hout S (2013) The american academy of sleep medicine inter-scorer reliability program: sleep stage scoring. J Clin Sleep Med 9(01):81–87

    Article  Google Scholar 

  142. Sadeh A, Acebo C (2002) The role of actigraphy in sleep medicine. Sleep Med Rev 6(2):113–124

    Article  Google Scholar 

  143. Sateia MJ (2014) International classification of sleep disorders. Chest 146(5):1387–1394

    Article  Google Scholar 

  144. Schnall RP, Shlitner A, Sheffy J, Kedar R, Lavie P (1999) Periodic, profound peripheral vasoconstriction as a new marker of obstructive sleep apnea. Sleep 22(7):939–946

    Google Scholar 

  145. Schulz H (2008) Rethinking sleep analysis comment on the aasm manual for the scoring of sleep and associated events. J Clin Sleep Med 4(02):99–103

    Article  Google Scholar 

  146. Schumm J, Axmann S, Arnrich B, Tröster G (2010) Automatic signal appraisal for unobtrusive ecg measurements. Int. J. Bioelectromagn 12(4):158–164

    Google Scholar 

  147. Schumm J, Setz C, Bächlin M, Bächler M, Arnrich B, Tröster G (2010) Unobtrusive physiological monitoring in an airplane seat. Pers Ubiquit Comput 14(6):541–550

    Article  Google Scholar 

  148. Scullin MK, Bliwise DL (2015) Sleep, cognition, and normal aging: integrating a half century of multidisciplinary research. Perspect Psychol Sci 10(1):97–137

    Article  Google Scholar 

  149. Singh RK, Sarkar A, Anoop C (2016) A health monitoring system using multiple non-contact ecg sensors for automotive drivers. In: 2016 IEEE international instrumentation and measurement technology conference proceedings. IEEE, pp 1–6

    Google Scholar 

  150. Solà-Soler J, Fiz JA, Morera J, Jané R (2012) Multiclass classification of subjects with sleep apnoea-hypopnoea syndrome through snoring analysis. Med Eng Phys 34(9):1213–1220

    Article  Google Scholar 

  151. Solutions CS (2020) Watch pat. https://cardiosleepsolutions.com/product/watchpat-one/. [Accessed 21 Jan 2020]

  152. Solutions VCH (2020) Vivalnk ecg patch. http://www.vivalnk.com/ecg-monitor. [Accessed 3 Feb 2020]

  153. Somers VK, Dyken ME, Mark AL, Abboud FM (1993) Sympathetic-nerve activity during sleep in normal subjects. N Engl J Med 328(5):303–307

    Article  Google Scholar 

  154. Stephansen JB, Olesen AN, Olsen M, Ambati A, Leary EB, Moore HE, Carrillo O, Lin L, Han F, Yan H et al (2018) Neural network analysis of sleep stages enables efficient diagnosis of narcolepsy. Nat Commun 9(1):1–15

    Article  Google Scholar 

  155. Sun Y, Yu XB (2016) Capacitive biopotential measurement for electrophysiological signal acquisition: A review. IEEE Sens J 16(9):2832–2853

    Article  Google Scholar 

  156. Supratak A, Dong H, Wu C, Guo Y (2017) Deepsleepnet: A model for automatic sleep stage scoring based on raw single-channel eeg. IEEE Trans Neural Syst Rehabil Eng 25(11):1998–2008

    Article  Google Scholar 

  157. iRhythm Technologies: Zio xt. https://www.irhythmtech.com/products-services/zio-xt. [Accessed 3 Feb 2020]

  158. Terrill PI (2019) A review of approaches for analysing obstructive sleep apnoea-related patterns in pulse oximetry data. Respirology

    Google Scholar 

  159. Tsinalis O, Matthews PM, Guo Y, Zafeiriou S (2016) Automatic sleep stage scoring with single-channel eeg using convolutional neural networks. arXiv preprint arXiv:1610.01683

  160. Uçar MK, Bozkurt MR, Bilgin C, Polat K (2018) Automatic sleep staging in obstructive sleep apnea patients using photoplethysmography, heart rate variability signal and machine learning techniques. Neural Comput Appl 29(8):1–16

    Article  Google Scholar 

  161. Uddin M, Chow C, Su S (20148) Classification methods to detect sleep apnea in adults based on respiratory and oximetry signals: a systematic review. Physiol Meas 39(3):03TR01

    Google Scholar 

  162. Ueno A, Akabane Y, Kato T, Hoshino H, Kataoka S, Ishiyama Y (2007) Capacitive sensing of electrocardiographic potential through cloth from the dorsal surface of the body in a supine position: A preliminary study. IEEE Trans Biomed Eng 54(4):759–766

    Article  Google Scholar 

  163. Varon C, Caicedo A, Testelmans D, Buyse B, Van Huffel S (2015) A novel algorithm for the automatic detection of sleep apnea from single-lead ecg. IEEE Trans Biomed Eng 62(9):2269–2278

    Article  Google Scholar 

  164. Varon C, Morales J, Lázaro J, Orini M, Deviaene M, Kontaxis S, Testelmans D, Buyse B, Borzée P, Sörnmo L, Laguna P, Gil E, Bailón R (2020) A comparative study of ecg-derived respiration in ambulatory monitoring using the single-lead ecg. Submitted to scientific reports

    Google Scholar 

  165. Varon C, Van Huffel S (2017) Complexity and nonlinearities in cardiorespiratory signals in sleep and sleep apnea. In: Complexity and nonlinearity in cardiovascular signals. Springer, pp 503–537

    Google Scholar 

  166. Vehkaoja A, Salo A, Peltokangas M, Verho J, Salpavaara T, Lekkala J (2014) Unconstrained night-time heart rate monitoring with capacitive electrodes. In: XIII mediterranean conference on medical and biological engineering and computing 2013. Springer, pp 1511–1514

    Google Scholar 

  167. Weil MB, Oehler M, Schilling M, Maier LS (2012) First clinical evaluation of a novel capacitive ecg system in patients with acute myocardial infarction. Clin Res Cardiol 101(3):165–174

    Article  Google Scholar 

  168. Willemen T, Van Deun D, Verhaert V, Vandekerckhove M, Exadaktylos V, Verbraecken J, Van Huffel S, Haex B, Vander Sloten J (2014) An evaluation of cardiorespiratory and movement features with respect to sleep-stage classification. IEEE J Biomed Health Inform 18(2):661–669

    Article  Google Scholar 

  169. Willemen T, Varon C, Dorado AC, Haex B, Vander Sloten J, Van Huffel S (2015) Probabilistic cardiac and respiratory based classification of sleep and apneic events in subjects with sleep apnea. Physiol Meas 36(10):2103

    Article  Google Scholar 

  170. Withings: Sleep mat. https://www.beddit.com/. [Accessed 3 Feb 2020]

  171. Wu KF, Zhang YT (2008) Contactless and continuous monitoring of heart electric activities through clothes on a sleeping bed. In: 2008 international conference on information technology and applications in biomedicine. IEEE, pp 282–285

    Google Scholar 

  172. X, P.: Potential x smart earbuds. https://www.potential-x.com/. [Accessed 3 Feb 2020]

  173. Xiao M, Yan H, Song J, Yang Y, Yang X (2013) Sleep stages classification based on heart rate variability and random forest. Biomed Signal Process Control 8(6):624–633

    Article  Google Scholar 

  174. Xie B, Minn H (2012) Real-time sleep apnea detection by classifier combination. IEEE Trans Inf Technol Biomed 16(3):469–477

    Article  Google Scholar 

  175. Zaunseder S, Henning A, Wedekind D, Trumpp A, Malberg H (2017) Unobtrusive acquisition of cardiorespiratory signals. Somnologie 21(2):93–100

    Article  Google Scholar 

  176. Zhu K, Li M, Akbarian S, Hafezi M, Yadollahi A, Taati B (2019) Vision-based heart and respiratory rate monitoring during sleep-a validation study for the population at risk of sleep apnea. IEEE J Transl Eng Health Med 7:1–8

    Article  Google Scholar 

  177. Ziegler D, Laux G, Dannehl K, Spüler M, Mühlen H, Mayer P, Gries F (1992) Assessment of cardiovascular autonomic function: age-related normal ranges and reproducibility of spectral analysis, vector analysis, and standard tests of heart rate variation and blood pressure responses. Diabet Med 9(2):166–175

    Article  Google Scholar 

  178. Zink MD, Brüser C, Stüben BO, Napp A, Stöhr R, Leonhardt S, Marx N, Mischke K, Schulz JB, Schiefer J (2017) Unobtrusive nocturnal heartbeat monitoring by a ballistocardiographic sensor in patients with sleep disordered breathing. Sci Rep 7(1):13175

    Article  Google Scholar 

Download references

Acknowledgements

This research received funding from Agentschap Innoveren en Ondernemen (VLAIO) 150466 OSA+, imec sbo funds Wearablehealth, and the Flemish Government (AI Research Program). SVH, CV, DH, and MD are affiliated to Leuven.AI - KU Leuven institute for AI, B-3000, Leuven, Belgium. KU Leuven Stadius acknowledges the financial support of imec.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabine Van Huffel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Deviaene, M. et al. (2022). Sleep Monitoring in Adults Using Wearables and Unobtrusive Technology. In: Gargiulo, G.D., Naik, G.R. (eds) Wearable/Personal Monitoring Devices Present to Future. Springer, Singapore. https://doi.org/10.1007/978-981-16-5324-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-5324-7_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-5323-0

  • Online ISBN: 978-981-16-5324-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics