Abstract
Localization is an important issue for UAV (Unmanned Aerial Vehicle) applications. This paper proposes a localization algorithm based on the combination of direct method and feature-based method. The visual odometer uses the photometric error to directly match and track the camera’s pose to improve the real-time performance. Then the ORB (Oriented FAST and Rotated Brief) features are extended from key frames, and local and global optimization can be achieved through key frames to improve map consistency by Bundle Adjustment. A depth filter is also introduced to optimize the map points by accumulating depth information of multiple frames. Then the localization accuracy can be improved by building a more accurate map. The proposed algorithm can achieve faster pose estimation and higher real-time performance while ensuring localization accuracy in indoor environments.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
GNSS I, MIT.: Draper Research Team Equips UAV with Vision for GNSS-Denied Navigation. Inside GNSS (2017). https://insidegnss.com/mit-draper-research-team-equips-uav-with-vision-for-gnss-denied-navigation
Kong, L., Gong, P., Wang, L.: A review of the development status of micro-UAV. In: Proceedings of the 2019 World Transport Congress (ii). China Association for Science and Technology, Ministry of Transport, PRC, Chinese Academy of Engineering: China Highway Society, pp. 435–444 (2019). (in Chinese)
Li, Y., Mu, R., Shan, Y.: A brief analysis of the development status of unmanned systems vision SLAM technology. Control Decis. 1–10 (2020). (in Chinese). https://doi.org/10.13195/j.kzyjc.2019.1149
Lu, X.: Application research of wireless Positioning Technology on indoor Mobile platform. Ph.D. thesis. University of Science and Technology of China, Hefei (2020)
Schonberger, J.L., Frahm, J.-M.: Structure-from-motion revisited. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4104–4113 (2016)
Nistér, D., Naroditsky, O., Bergen, J.: Visual odometry. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1 (2004)
Rublee, E., Rabaud, V., Konolige, K., et al.: ORB: an efficient alternative to sift or Surf. In: IEEE International Conference on Computer Vision, pp. 2564–2571 (2011)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)
Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006). https://doi.org/10.1007/11744023_32
Mur-Artal, R., Montiel, J.M., Tardos, J.D.: ORB-SLAM: a versatile and accurate monocular SLAM system. IEEE Trans. Rob. 31(5), 1147–1163 (2015)
Mur-Artal, R., Tardos, J.D.: ORB-SLAM2: an open-source SLAM system for monocular, stereo, and RGB-D cameras. IEEE Trans. Rob. 33, 1255–1262 (2017)
Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle adjustment — a modern synthesis. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) IWVA 1999. LNCS, vol. 1883, pp. 298–372. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44480-7_21
Pumarola, A., Vakhitov, A., Agudo, A., et al.: PL-SLAM: real-time monocular visual SLAM with points and lines. In: IEEE International Conference on Robotics and Automation, pp. 4503–4508 (2017)
Engel, J., Schöps, T., Cremers, D.: LSD-SLAM: large-scale direct monocular SLAM. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8690, pp. 834–849. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10605-2_54
Wang, R., Schworer, M., Cremers, D.: Stereo DSO: large-scale direct sparse visual odometry with stereo cameras. In: IEEE International Conference on Computer Vision. IEEE Computer Society, pp. 3923–3931 (2017)
Forster, C., Pizzoli, M., Scaramuzza, D.: SVO: fast semi-direct monocular visual odometry. In: IEEE International Conference on Robotics and Automation, pp. 15–22 (2014)
Forster, C., Zhang, Z., Gassner, M., et al.: SVO: semidirect visual odometry for monocular and multicamera systems. IEEE Trans. Rob. 33(2), 249–265 (2016)
Spaenlehauer, A., Frémont, V., Şekercioğlu, Y.A., et al.: A loosely-coupled approach for metric scale estimation in monocular vision-inertial systems. In: IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, pp. 137–143 (2017)
Leutenegger, S., Lynen, S., Bosse, M., et al.: Keyframe-based visual-inertial odometry using nonlinear optimization. Int. J. Robot. Res. 34(3), 314–334 (2015)
Qin, T., Shen, S.: Robust initialization of monocular visual-inertial estimation on aerial robots. In: IEEE International Conference on Intelligent Robots and Systems, pp. 4225–4232 (2017)
Wang, S., Clark, R., Wen, H., et al.: DeepVO: towards end-to-end visual odometry with deep recurrent convolutional neural networks. In: IEEE International Conference on Robotics and Automation (2017)
DeTone, D., Malisiewicz, T., Rabinovich, A.: Toward geometric deep SLAM. ArXiv abs/1707.07410 (2017)
Lianos, K.N., Schonberger, J.L., Pollefeys, M., et al.: VSO: visual semantic odometry. In: Proceedings of the European Conference on Computer Vision, pp. 234–250 (2018)
Cui, L., Ma, C.: SDF-SLAM: semantic depth filter SLAM for dynamic environments. IEEE Access 8, 95301–95311 (2020)
Vincent, J., Labbé, M., Lauzon, J.S., et al.: Dynamic object tracking and masking for visual SLAM. ArXiv abs/2008.00072 (2020)
Zhang, L., Wei, L., Shen, P., et al.: Semantic SLAM based on object detection and improved Octomap. IEEE Access 6, 75545–75559 (2018)
Kang, X., Yuan, S.: Robust data association for object-level semantic SLAM. ArXiv abs/1909.13493 (2019)
Bavle, H., De La Puente, P., How, J.P., et al.: VPS-SLAM: visual planar semantic SLAM for aerial robotic systems. IEEE Access 8, 60704–60718 (2020)
Nicholson, L., Milford, M., Sünderhauf, N.: Dual quadrics from object detections as landmarks in object-oriented SLAM. IEEE Robot. Autom. Lett. 4(1), 1–8 (2019)
Nocedal, J., Wright, S.: Numerical Optimization. Springer, New York (2006). https://doi.org/10.1007/978-0-387-40065-5
Kaehler, A., Bradski, G.: Learning Opencv3. Tsinghua University Press, Beijing (2018)
Civerra, J., Davison, A.J., Montiel, J.M.M.: Inverse depth parametrization for monocular SLAM. IEEE Trans. Rob. 24(5), 932–945 (2008)
Vogiatzis, G., Hernández, C.: Video-based. Real-time multi-view stereo. Image Vis. Comput. 29(7), 434–441 (2011)
ASL Datasets-The EuRoC MAV Dataset [EB/OL]. Projects.asl.ethz.ch. https://projects.asl.ethz.ch/datasets/
Acknowledgement
This work was supported under the National Key Research and Development Program of China (2018YFB1305505), National Natural Science Foundation of China (NSFC) (61973296) and Shenzhen Basic Research Program Ref. JCYJ20170818153635759, Science and Technology Planning Project of Guangdong Province Ref. 2017B010117009.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Zhou, Y., Yu, Z., Ma, Z. (2021). The Realtime Indoor Localization Unmanned Aerial Vehicle. In: Sun, F., Liu, H., Fang, B. (eds) Cognitive Systems and Signal Processing. ICCSIP 2020. Communications in Computer and Information Science, vol 1397. Springer, Singapore. https://doi.org/10.1007/978-981-16-2336-3_5
Download citation
DOI: https://doi.org/10.1007/978-981-16-2336-3_5
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-16-2335-6
Online ISBN: 978-981-16-2336-3
eBook Packages: Computer ScienceComputer Science (R0)