Nothing Special   »   [go: up one dir, main page]

Skip to main content

The Realtime Indoor Localization Unmanned Aerial Vehicle

  • Conference paper
  • First Online:
Cognitive Systems and Signal Processing (ICCSIP 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1397))

Included in the following conference series:

  • 1766 Accesses

Abstract

Localization is an important issue for UAV (Unmanned Aerial Vehicle) applications. This paper proposes a localization algorithm based on the combination of direct method and feature-based method. The visual odometer uses the photometric error to directly match and track the camera’s pose to improve the real-time performance. Then the ORB (Oriented FAST and Rotated Brief) features are extended from key frames, and local and global optimization can be achieved through key frames to improve map consistency by Bundle Adjustment. A depth filter is also introduced to optimize the map points by accumulating depth information of multiple frames. Then the localization accuracy can be improved by building a more accurate map. The proposed algorithm can achieve faster pose estimation and higher real-time performance while ensuring localization accuracy in indoor environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. GNSS I, MIT.: Draper Research Team Equips UAV with Vision for GNSS-Denied Navigation. Inside GNSS (2017). https://insidegnss.com/mit-draper-research-team-equips-uav-with-vision-for-gnss-denied-navigation

  2. Kong, L., Gong, P., Wang, L.: A review of the development status of micro-UAV. In: Proceedings of the 2019 World Transport Congress (ii). China Association for Science and Technology, Ministry of Transport, PRC, Chinese Academy of Engineering: China Highway Society, pp. 435–444 (2019). (in Chinese)

    Google Scholar 

  3. Li, Y., Mu, R., Shan, Y.: A brief analysis of the development status of unmanned systems vision SLAM technology. Control Decis. 1–10 (2020). (in Chinese). https://doi.org/10.13195/j.kzyjc.2019.1149

  4. Lu, X.: Application research of wireless Positioning Technology on indoor Mobile platform. Ph.D. thesis. University of Science and Technology of China, Hefei (2020)

    Google Scholar 

  5. Schonberger, J.L., Frahm, J.-M.: Structure-from-motion revisited. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4104–4113 (2016)

    Google Scholar 

  6. Nistér, D., Naroditsky, O., Bergen, J.: Visual odometry. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1 (2004)

    Google Scholar 

  7. Rublee, E., Rabaud, V., Konolige, K., et al.: ORB: an efficient alternative to sift or Surf. In: IEEE International Conference on Computer Vision, pp. 2564–2571 (2011)

    Google Scholar 

  8. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  9. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006). https://doi.org/10.1007/11744023_32

    Chapter  Google Scholar 

  10. Mur-Artal, R., Montiel, J.M., Tardos, J.D.: ORB-SLAM: a versatile and accurate monocular SLAM system. IEEE Trans. Rob. 31(5), 1147–1163 (2015)

    Article  Google Scholar 

  11. Mur-Artal, R., Tardos, J.D.: ORB-SLAM2: an open-source SLAM system for monocular, stereo, and RGB-D cameras. IEEE Trans. Rob. 33, 1255–1262 (2017)

    Article  Google Scholar 

  12. Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle adjustment — a modern synthesis. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) IWVA 1999. LNCS, vol. 1883, pp. 298–372. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44480-7_21

    Chapter  Google Scholar 

  13. Pumarola, A., Vakhitov, A., Agudo, A., et al.: PL-SLAM: real-time monocular visual SLAM with points and lines. In: IEEE International Conference on Robotics and Automation, pp. 4503–4508 (2017)

    Google Scholar 

  14. Engel, J., Schöps, T., Cremers, D.: LSD-SLAM: large-scale direct monocular SLAM. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8690, pp. 834–849. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10605-2_54

    Chapter  Google Scholar 

  15. Wang, R., Schworer, M., Cremers, D.: Stereo DSO: large-scale direct sparse visual odometry with stereo cameras. In: IEEE International Conference on Computer Vision. IEEE Computer Society, pp. 3923–3931 (2017)

    Google Scholar 

  16. Forster, C., Pizzoli, M., Scaramuzza, D.: SVO: fast semi-direct monocular visual odometry. In: IEEE International Conference on Robotics and Automation, pp. 15–22 (2014)

    Google Scholar 

  17. Forster, C., Zhang, Z., Gassner, M., et al.: SVO: semidirect visual odometry for monocular and multicamera systems. IEEE Trans. Rob. 33(2), 249–265 (2016)

    Article  Google Scholar 

  18. Spaenlehauer, A., Frémont, V., Şekercioğlu, Y.A., et al.: A loosely-coupled approach for metric scale estimation in monocular vision-inertial systems. In: IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, pp. 137–143 (2017)

    Google Scholar 

  19. Leutenegger, S., Lynen, S., Bosse, M., et al.: Keyframe-based visual-inertial odometry using nonlinear optimization. Int. J. Robot. Res. 34(3), 314–334 (2015)

    Article  Google Scholar 

  20. Qin, T., Shen, S.: Robust initialization of monocular visual-inertial estimation on aerial robots. In: IEEE International Conference on Intelligent Robots and Systems, pp. 4225–4232 (2017)

    Google Scholar 

  21. Wang, S., Clark, R., Wen, H., et al.: DeepVO: towards end-to-end visual odometry with deep recurrent convolutional neural networks. In: IEEE International Conference on Robotics and Automation (2017)

    Google Scholar 

  22. DeTone, D., Malisiewicz, T., Rabinovich, A.: Toward geometric deep SLAM. ArXiv abs/1707.07410 (2017)

    Google Scholar 

  23. Lianos, K.N., Schonberger, J.L., Pollefeys, M., et al.: VSO: visual semantic odometry. In: Proceedings of the European Conference on Computer Vision, pp. 234–250 (2018)

    Google Scholar 

  24. Cui, L., Ma, C.: SDF-SLAM: semantic depth filter SLAM for dynamic environments. IEEE Access 8, 95301–95311 (2020)

    Article  Google Scholar 

  25. Vincent, J., Labbé, M., Lauzon, J.S., et al.: Dynamic object tracking and masking for visual SLAM. ArXiv abs/2008.00072 (2020)

    Google Scholar 

  26. Zhang, L., Wei, L., Shen, P., et al.: Semantic SLAM based on object detection and improved Octomap. IEEE Access 6, 75545–75559 (2018)

    Article  Google Scholar 

  27. Kang, X., Yuan, S.: Robust data association for object-level semantic SLAM. ArXiv abs/1909.13493 (2019)

    Google Scholar 

  28. Bavle, H., De La Puente, P., How, J.P., et al.: VPS-SLAM: visual planar semantic SLAM for aerial robotic systems. IEEE Access 8, 60704–60718 (2020)

    Article  Google Scholar 

  29. Nicholson, L., Milford, M., Sünderhauf, N.: Dual quadrics from object detections as landmarks in object-oriented SLAM. IEEE Robot. Autom. Lett. 4(1), 1–8 (2019)

    Article  Google Scholar 

  30. Nocedal, J., Wright, S.: Numerical Optimization. Springer, New York (2006). https://doi.org/10.1007/978-0-387-40065-5

  31. Kaehler, A., Bradski, G.: Learning Opencv3. Tsinghua University Press, Beijing (2018)

    Google Scholar 

  32. Civerra, J., Davison, A.J., Montiel, J.M.M.: Inverse depth parametrization for monocular SLAM. IEEE Trans. Rob. 24(5), 932–945 (2008)

    Article  Google Scholar 

  33. Vogiatzis, G., Hernández, C.: Video-based. Real-time multi-view stereo. Image Vis. Comput. 29(7), 434–441 (2011)

    Article  Google Scholar 

  34. ASL Datasets-The EuRoC MAV Dataset [EB/OL]. Projects.asl.ethz.ch. https://projects.asl.ethz.ch/datasets/

Download references

Acknowledgement

This work was supported under the National Key Research and Development Program of China (2018YFB1305505), National Natural Science Foundation of China (NSFC) (61973296) and Shenzhen Basic Research Program Ref. JCYJ20170818153635759, Science and Technology Planning Project of Guangdong Province Ref. 2017B010117009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yimin Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, Y., Yu, Z., Ma, Z. (2021). The Realtime Indoor Localization Unmanned Aerial Vehicle. In: Sun, F., Liu, H., Fang, B. (eds) Cognitive Systems and Signal Processing. ICCSIP 2020. Communications in Computer and Information Science, vol 1397. Springer, Singapore. https://doi.org/10.1007/978-981-16-2336-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-2336-3_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-2335-6

  • Online ISBN: 978-981-16-2336-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics