Nothing Special   »   [go: up one dir, main page]

Skip to main content

Modelling Energy Consumption of Domestic Households via Supervised and Unsupervised Learning: A Case Study

  • Conference paper
  • First Online:
Machine Learning and Metaheuristics Algorithms, and Applications (SoMMA 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1366))

  • 1321 Accesses

Abstract

Electricity energy billing system is prevalent in most of the places in the world. Also digitization of these electricity bills has also been successfully implemented in various underdeveloped countries as well. The vast amount of data is available regarding the energy consumption of consumers. In this paper we consider a case study of one city, about which we have electricity energy data for several years. We first classify consumers based on their average energy usage via clustering algorithms. We also have survey data of several houses. In that survey, we have building information, family information and also appliance information. We use various regression techniques to disaggregate the energy usage corresponding to various appliances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gajowniczek, K., Zabkowski, T.: Simulation study on clustering approaches for short-term electricity forecasting. Complexity 2018 (2018)

    Google Scholar 

  2. Lazarova-Molnar, S., Mohamed, N.: Collaborative data analytics for smart buildings: opportunities and models. Cluster Comput. 22(1), 1065–1077 (2017). https://doi.org/10.1007/s10586-017-1362-x

    Article  Google Scholar 

  3. Ushakova, A., Mikhaylov, S.J.: Big data to the rescue? Challenges in analysing granular household electricity consumption in the United Kingdom. Energy Res. Social Sci. 64, 101428 (2020)

    Article  Google Scholar 

  4. Walker, S., Khan, W., Katic, K., Maassen, W., Zeiler, W.: Accuracy of different machine learning algorithms and added-value of predicting aggregated-level energy performance of commercial buildings. Energy Build. 209, 109705 (2020)

    Article  Google Scholar 

  5. Sadeghi, A., Sinaki, R.K., Young, W.A.: An intelligent model to predict energy performances of residential buildings based on deep neural networks. Energies 13, 571 (2020)

    Article  Google Scholar 

  6. Sehovac, L., Nesen, C., Grolinger, K.: Forecasting building energy consumption with deep learning: a sequence to sequence approach. In: IEEE International Congress on Internet of Things (ICIOT), pp. 108–116. IEEE (2019)

    Google Scholar 

  7. Hong, T., Wang, Z., Luo, X., Zhang, W.: State-of-the-art on research and applications of machine learning in the building life cycle. Energy Build. 212, 109831 (2020)

    Article  Google Scholar 

  8. Saha, H., Florita, A.R., Henze, G.P., Sarkar, S.: Occupancy sensing in buildings: a review of data analytics approaches. Energy Build. 188, 278–285 (2019)

    Article  Google Scholar 

  9. Causone, F., Carlucci, S., Ferrando, M., Marchenko, A., Erba, S.: A data-driven procedure to model occupancy and occupant-related electric load profiles in residential buildings for energy simulation. Energy Build. 202, 109342 (2019)

    Article  Google Scholar 

  10. Tang, R., Wang, S., Sun, S.: Impacts of technology-guided occupant behavior on air-conditioning system control and building energy use. Build. Simul. 14, 209–217 (2021). https://doi.org/10.1007/s12273-020-0605-6

    Article  Google Scholar 

  11. Mitra, D., Steinmetz, N., Chu, Y., Cetin, K.S.: Typical occupancy profiles and behaviors in residential buildings in the united states. Energy Build. 210, 109713 (2020)

    Article  Google Scholar 

  12. Buttitta, G., Finn, D.P.: A high-temporal resolution residential building occupancy model to generate high-temporal resolution heating load profiles of occupancy-integrated archetypes. Energy Build. 206, 109577 (2020)

    Article  Google Scholar 

  13. Hu, S., Yan, D., An, J., Guo, S., Qian, M.: Investigation and analysis of Chinese residential building occupancy with large-scale questionnaire surveys. Energy Build. 193, 289–304 (2019)

    Article  Google Scholar 

  14. Hu, S., Yan, D., Qian, M.: Using bottom-up model to analyze cooling energy consumption in China’s urban residential building. Energy Build. 202, 109352 (2019)

    Article  Google Scholar 

  15. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2), 129–137 (1982)

    Article  MathSciNet  Google Scholar 

  16. Akaike, H.: Information theory and an extension of the maximum likelihood principle. In: Parzen, E., Tanabe, K., Kitagawa, G. (eds.) Selected Papers of Hirotugu Akaike. Springer Series in Statistics (Perspectives in Statistics), pp. 199–213. Springer, New York (1998). https://doi.org/10.1007/978-1-4612-1694-0_15

    Chapter  Google Scholar 

  17. Schwarz, G., et al.: Estimating the dimension of a model. Ann. Stat. 6(2), 461–464 (1978)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

The author would like to thank TEQIP-III for the support for this project. Part of the work was carried out when the author was project associate at IISc Bangalore. The data was obtained from KSEB under the joint project of IISc Bangalore and Clytics Pvt. Ltd. Their support and permission to use the data is highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahid Mehraj Shah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shah, S.M. (2021). Modelling Energy Consumption of Domestic Households via Supervised and Unsupervised Learning: A Case Study. In: Thampi, S.M., Piramuthu, S., Li, KC., Berretti, S., Wozniak, M., Singh, D. (eds) Machine Learning and Metaheuristics Algorithms, and Applications. SoMMA 2020. Communications in Computer and Information Science, vol 1366. Springer, Singapore. https://doi.org/10.1007/978-981-16-0419-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-0419-5_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-0418-8

  • Online ISBN: 978-981-16-0419-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics