Abstract
Semantic segmentation is essential for autonomous driving, which classifies roads and other objects in the image and provides pixel-level information. For high quality autonomous driving, it is necessary to consider the driving environment of the vehicle, and the vehicle speed should be controlled according to types of road. For this purpose, the semantic segmentation module has to classify types of road. However, current public datasets do not provide annotation data for these road types. In this paper, we propose a method to train the semantic segmentation model for classifying road types. We analyzed the problems that can occur when using a public dataset like KITTI or Cityscapes for training, and used Mapillary Vistas data as training data to get generalized performance. In addition, we use focal loss and over-sampling techniques to alleviate the class imbalance problem caused by relatively small class data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)
Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the KITTI dataset. Int. J. Robot. Res. 32, 1231–1237 (2013)
Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3213–3223 (2016)
Iagnemma, K., Kang, S., Shibly, H., Dubowsky, S.: Online terrain parameter estimation for wheeled mobile robots with application to planetary rovers. IEEE Trans. Robot. 20(5), 921–927 (2004)
Wang, S., Kodagoda, S., Ranasinghe, R.: Road terrain type classification based on laser measurement system data. In: Australasian Conference on Robotics and Automation (ACRA) (2012)
Slavkovikj, V., Verstockt, S., De Neve, W., Van Hoecke, S., Van de Walle, R.: Image-based road type classification. In: International Conference on Pattern Recognition (CVPR) (2014)
Roychowdhury, S., Zhao, M., Wallin, A., Ohlsson, N., Jonasson, M.: Machine learning models for road surface and friction estimation using front-camera images. In: International Joint Conference on Neural Networks (IJCNN) (2018)
Neuhold, G., Ollmann, T., Bulo, S.R., Kontschieder, P.: The mapillary vistas dataset for semantic understanding of street scenes. In: The IEEE International Conference on Computer Vision (ICCV), pp. 4990–4999 (2017)
Lin, T.-Y., Goyal, P., Girshick, R., He, K., Dollar, P.: Focal loss for dense object detection. In: The IEEE International Conference on Computer Vision (ICCV), pp. 2980–2988 (2017)
Valada, A., Vertens, J., Dhall, A., Burgard, W.: AdapNet: adaptive semantic segmentation in adverse environmental conditions. In: International Conference on Robotics and Automation (ICRA) (2017)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: International Conference on Pattern Recognition (CVPR) (2015)
Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40, 834–848 (2018)
Acknowledgments
This work was in parts supported by Korea Evaluation Institute of Industrial Technology (KEIT) grant funded by the Korea government (MOTIE) (No. 20000293, Road Surface Condition Detection using Environmental and In-vehicle Sensors).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Lee, D., Kim, S., Lee, H., Chung, C.C., Kim, WY. (2020). Paved and Unpaved Road Segmentation Using Deep Neural Network. In: Cree, M., Huang, F., Yuan, J., Yan, W. (eds) Pattern Recognition. ACPR 2019. Communications in Computer and Information Science, vol 1180. Springer, Singapore. https://doi.org/10.1007/978-981-15-3651-9_3
Download citation
DOI: https://doi.org/10.1007/978-981-15-3651-9_3
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-15-3650-2
Online ISBN: 978-981-15-3651-9
eBook Packages: Computer ScienceComputer Science (R0)