Nothing Special   »   [go: up one dir, main page]

Skip to main content

Modeling Proton Exchange Membrane Fuel Cells—A Review

  • Chapter
  • First Online:
50 Years of CFD in Engineering Sciences

Abstract

Proton Exchange Membrane Fuel Cell (also called Polymer Electrolyte Membrane Fuel Cell) PEMFC is an electrochemical device that converts the chemical energy in the Hydrogen–Oxygen reaction directly into electrical energy. The reaction takes place at low temperatures, with water and heat as products. The conversion efficiency could be as high as 70%. These make it very attractive as a power source for many applications in electronics, automotive and back-up generator. Much research has been performed on PEMFC over the past 30 years to improve performance and reliability. This paper reviews such works, with an emphasis on computational methods as a supplement to experimental studies. It starts with a review of the fundamentals of PEMFC, illustrates principles of operation, and finally discusses computational studies which are largely based on standard computational fluid dynamics (CFD) methods. These range from one-dimensional, isothermal, single-phase to three-dimensional, non-isothermal, two-phase flow through porous media. The CFD methods are supplemented with electrical charge equations. Although the state-of-the-art is very advanced and can simulate accurately a single cell, or a small stack with a few cells, large stacks containing tens or hundreds of cells, typical of many practical applications, cannot still be resolved with existing computer resources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Spalding, D. B. (1951). The combustion of liquid fuels. In Engineering. Cambridge, U.K.: Cambridge University Press.

    Google Scholar 

  2. Spalding, D. B. (1953). The combustion of liquid fuels. Symposium (International) on Combustion, 4(1), 847–864.

    Article  Google Scholar 

  3. Spalding, D. B. (1955). Some fundamentals of combustion. In Gas turbine series (Vol. 2, 250 pp.). Butterworth’s Scientific Publications.

    Google Scholar 

  4. Spalding, D. B. (1978). A general theory of turbulent combustion. Journal of Energy, 2(1), 16–23.

    Article  Google Scholar 

  5. Spalding, D. B. (1979). Combustion and mass transfer: A textbook with multiple-choice exercises for engineering students (1st ed., p. vii, 409 pp.). Oxford; New York: Pergamon International Library of Science, Technology, Engineering, and Social Studies, Pergamon Press.

    Google Scholar 

  6. Dicks, A., & Rand, D. (2018). Fuel cell systems explained (3rd ed.). West Sussex: Wiley.

    Book  Google Scholar 

  7. Stone, R. (2003). Competing technologies for transportation. In G. Hoogers (Ed.), Fuel cell technology handbook. Boca Raton, FL: CRC Press.

    Google Scholar 

  8. Wang, Y., et al. (2011). A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research. Applied Energy, 88(4), 981–1007.

    Article  Google Scholar 

  9. Dutta, S., Shimpalee, S., & Van Zee, J. W. (2001). Numerical prediction of mass-exchange between cathode and anode channels in a PEM fuel cell. International Journal of Heat and Mass Transfer, 44, 2029–2042.

    Article  MATH  Google Scholar 

  10. Edwards, R. L., & Demuren, A. (2018). Interface model of PEM fuel cell membrane steady-state behavior. International Journal of Energy and Environmental Engineering.

    Google Scholar 

  11. Wang, C.-Y. (2004). Fundamental models for fuel cell engineering. Chemical Reviews, 104(10), 4727–4766.

    Article  Google Scholar 

  12. Guvelioglu, G. H., & Stenger, H. G. (2005). Computational fluid dynamics modeling of polymer electrolyte membrane fuel cells. Journal of Power Sources, 147(1–2), 95–106.

    Article  Google Scholar 

  13. Bednarek, T., & Tsotridis, G. (2017). Issues associated with modelling of proton exchange membrane fuel cell by computational fluid dynamics. Journal of Power Sources, 343, 550–563.

    Article  Google Scholar 

  14. Hoogers, G. (2003). Fuel cell components and their impact on performance. In G. Hoogers (Ed.), Fuel cell technology handbook. Boca Raton, FL: CRC Press.

    Google Scholar 

  15. Hoogers, G. (2003). Automotive applications. In G. Hoogers (Ed.), Fuel cell technology handbook. Boca Raton, FL: CRC Press.

    Google Scholar 

  16. Macedo-Valencia, J., et al. (2016). 3D CFD modeling of a PEM fuel cell stack. International Journal of Hydrogen Energy, 41.

    Article  Google Scholar 

  17. Siegel, C. (2008). Review of computational heat and mass transfer modeling in polymer-electrolyte-membrane (PEM) fuel cells. Energy, 33, 1331–1352.

    Article  Google Scholar 

  18. Pharoah, J. G., & Burheim, O. S. (2010). On the temperature distribution in polymer electrolyte fuel cells. Journal of Power Sources, 195(16), 5235–5245.

    Article  Google Scholar 

  19. Burheim, O., et al. (2010). Ex situ measurements of through-plane thermal conductivities in a polymer electrolyte fuel cell. Journal of Power Sources, 195(1), 249–256.

    Article  Google Scholar 

  20. Barbir, F. (2013). PEM fuel cells: Theory and practice. Academic Press.

    Google Scholar 

  21. Wu, H.-W. (2016). A review of recent development: Transport and performance modeling of PEM fuel cells. Applied Energy, 165, 81–106.

    Article  Google Scholar 

  22. Patankar, S. V., & Spalding, D. B. (1972). A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. International Journal of Heat and Mass Transfer, 15, 1787–1806.

    Article  MATH  Google Scholar 

  23. Wilberforce, T., et al. (2017). Modelling and simulation of proton exchange membrane fuel cell with serpentine bipolar plate using MATLAB. International Journal of Hydrogen Energy.

    Google Scholar 

  24. Mench, M. (2008). Fuel cell engines. Wiley.

    Google Scholar 

  25. Wood, D. L., Yi, J. S., & Nguyen, T. V. (1998). Effect of direct liquid water injection and interdigitated flow field on the performance of proton exchange membrane fuel cells. Electrochimica Acta, 43(24), 3795–3809.

    Article  Google Scholar 

  26. Laurencelle, F., et al. (2001). Characterization of a Ballard MK5-E proton exchange membrane fuel cell stack. Fuel Cells, 1(1), 66–71.

    Article  Google Scholar 

  27. Cooper, K. R., et al. (2007). Experimental methods and data analyses for polymer electrolyte fuel cells. Scribner Associates, Inc.

    Google Scholar 

  28. Ju, H., & Wang, C.-Y. (2004). Experimental validation of a PEM fuel cell model by current distribution data. Journal of the Electrochemical Society, 151(11), A1954–A1960.

    Article  Google Scholar 

  29. Mench, M. M., Wang, C. Y., & Ishikawa, M. (2003). In situ current distribution measurements in polymer electrolyte fuel cells. Journal of the Electrochemical Society, 150(8), A1052–A1059.

    Article  Google Scholar 

  30. Wieser, C., Helmbold, A., & Gülzow, E. (2000). A new technique for two-dimensional current distribution measurements in electrochemical cells. Journal of Applied Electrochemistry, 30(7), 803–807.

    Article  Google Scholar 

  31. Geiger, A. B., et al. (2004). An approach to measuring locally resolved currents in polymer electrolyte fuel cells. Journal of the Electrochemical Society, 151(3), A394–A398.

    Article  Google Scholar 

  32. Natarajan, D., & Van Nguyen, T. (2005). Current distribution in PEM fuel cells. Part 1: Oxygen and fuel flow rate effects. AIChE Journal, 51(9), 2587–2598.

    Article  Google Scholar 

  33. Vie, P. J. S., & Kjelstrup, S. (2004). Thermal conductivities from temperature profiles in the polymer electrolyte fuel cell. Electrochimica Acta, 49(7), 1069–1077.

    Article  Google Scholar 

  34. Mench, M., Burford, D. J., & Davis, T. W. (2003). In situ temperature distribution measurements in an operating polymer electrolyte fuel cell, Paper No. 42393. In Proceedings of the 2003 International Mechanical Engineering conference and Exposition (IMECE). Washington, DC: ASME.

    Google Scholar 

  35. Burford, D. J., Davis, T. W., & Mench, M. M. (2004). Heat transport and temperature distribution in PEFCs, IMECEC 2004-59497. In Proceedings of the 2004 International Mechanical Engineering conference and Exposition (IMECE), Anaheim, CA.

    Google Scholar 

  36. Mench, M. M., Dong, Q. L., & Wang, C. Y. (2003). In situ water distribution measurements in a polymer electrolyte fuel cell. Journal of Power Sources, 124(1), 90–98.

    Article  Google Scholar 

  37. Dong, Q., Kull, J., & Mench, M. M. (2005). Real-time water distribution in a polymer electrolyte fuel cell. Journal of Power Sources, 139(1–2), 106–114.

    Article  Google Scholar 

  38. Edwards, R. L., & Demuren, A. (2016). Regression analysis of PEM fuel cell transient response. International Journal of Energy and Environmental Engineering, 7(3), 329–341.

    Article  Google Scholar 

  39. Stevens, D. A., & Dahn, J. R. (2003). Electrochemical characterization of the active surface in carbon-supported platinum electrocatalysts for PEM fuel cells. Journal of the Electrochemical Society, 150(6), A770–A775.

    Article  Google Scholar 

  40. Neyerlin, K. C., et al. (2006). Determination of catalyst unique parameters for the oxygen reduction reaction in a PEMFC. Journal of the Electrochemical Society, 153(10), A1955–A1963.

    Article  Google Scholar 

  41. Neyerlin, K. C., et al. (2007). Cathode catalyst utilization for the ORR in a PEMFC. Journal of the Electrochemical Society, 154(2), B279–B287.

    Article  Google Scholar 

  42. Soboleva, T., et al. (2011). PEMFC catalyst layers: The role of micropores and mesopores on water sorption and fuel cell activity. ACS Applied Materials & Interfaces, 3(6), 1827–1837.

    Article  Google Scholar 

  43. Cooper, K. R., & Smith, M. (2006). Electrical test methods for on-line fuel cell ohmic resistance measurement. Journal of Power Sources, 160(2), 1088–1095.

    Article  Google Scholar 

  44. Neyerlin, K. C., et al. (2007). Study of the exchange current density for the hydrogen oxidation and evolution reactions. Journal of the Electrochemical Society, 154(7), B631–B635.

    Article  Google Scholar 

  45. Liu, Y., et al. (2009). Proton conduction and oxygen reduction kinetics in PEM fuel cell cathodes: Effects of ionomer-to-carbon ratio and relative humidity. Journal of the Electrochemical Society, 156(8), B970–B980.

    Article  Google Scholar 

  46. Kulikovsky, A. A. (2010). Introduction. In A. A. Kulikovsky (Ed.), Analytical modelling of fuel cells (pp. xiii–xv). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  47. Uchida, M., et al. (1995). Investigation of the microstructure in the catalyst layer and effects of both perfluorosulfonate ionomer and PTFE-loaded carbon on the catalyst layer of polymer electrolyte fuel cells. Journal of the Electrochemical Society, 142(12), 4143–4149.

    Article  Google Scholar 

  48. Uchida, M., et al. (1996). Effects of microstructure of carbon support in the catalyst layer on the performance of polymer-electrolyte fuel cells. Journal of the Electrochemical Society, 143(7), 2245–2252.

    Article  Google Scholar 

  49. Xie, J., et al. (2004). Ionomer segregation in composite MEAs and its effect on polymer electrolyte fuel cell performance. Journal of the Electrochemical Society, 151(7), A1084–A1093.

    Article  Google Scholar 

  50. Wang, Y., & Feng, X. (2008). Analysis of reaction rates in the cathode electrode of polymer electrolyte fuel cell I. Single-layer electrodes. Journal of the Electrochemical Society, 155(12), B1289–B1295.

    Article  Google Scholar 

  51. Wang, Y. (2007). Analysis of the key parameters in the cold start of polymer electrolyte fuel cells. Journal of the Electrochemical Society, 154(10), B1041–B1048.

    Article  Google Scholar 

  52. Stumper, J., Haas, H., & Granados, A. (2005). In situ determination of MEA resistance and electrode diffusivity of a fuel cell. Journal of the Electrochemical Society, 152(4), A837–A844.

    Article  Google Scholar 

  53. Yu, Z., & Carter, R. N. (2010). Measurement of effective oxygen diffusivity in electrodes for proton exchange membrane fuel cells. Journal of Power Sources, 195(4), 1079–1084.

    Article  Google Scholar 

  54. Shen, J., et al. (2011). Measurement of effective gas diffusion coefficients of catalyst layers of PEM fuel cells with a Loschmidt diffusion cell. Journal of Power Sources, 196(2), 674–678.

    Article  Google Scholar 

  55. Yu, Z., Carter, R. N., & Zhang, J. (2012). Measurements of pore size distribution, porosity, effective oxygen diffusivity, and tortuosity of PEM fuel cell electrodes. Fuel Cells, 12(4), 557–565.

    Article  Google Scholar 

  56. Lange, K. J., Sui, P.-C., & Djilali, N. (2012). Determination of effective transport properties in a PEMFC catalyst layer using different reconstruction algorithms. Journal of Power Sources, 208, 354–365.

    Article  Google Scholar 

  57. Singh, R., et al. (2014). Dual-beam FIB/SEM characterization, statistical reconstruction, and pore scale modeling of a PEMFC catalyst layer. Journal of the Electrochemical Society, 161(4), F415–F424.

    Article  Google Scholar 

  58. Durst, J., et al. (2015). Hydrogen oxidation and evolution reaction kinetics on carbon supported Pt, Ir, Rh, and Pd electrocatalysts in acidic media. Journal of the Electrochemical Society, 162(1), F190–F203.

    Article  Google Scholar 

  59. Gasteiger, H.A., J.E. Panels, and S.G. Yan. (2004). Dependence of PEM fuel cell performance on catalyst loading. Journal of Power Sources, 127(1–2), 162–171.

    Article  Google Scholar 

  60. Kornyshev, A. A., & Kulikovsky, A. A. (2001). Characteristic length of fuel and oxygen consumption in feed channels of polymer electrolyte fuel cells. Electrochimica Acta, 46(28), 4389–4395.

    Article  Google Scholar 

  61. Jaouen, F., Lindbergh, G., & Sundholm, G. (2002). Investigation of mass-transport limitations in the solid polymer fuel cell cathode. Journal of the Electrochemical Society, 149(4), A437–A447.

    Article  Google Scholar 

  62. Neyerlin, K. C., et al. (2005). Effect of relative humidity on oxygen reduction kinetics in a PEMFC. Journal of the Electrochemical Society, 152(6), A1073–A1080.

    Article  Google Scholar 

  63. Shimpalee, S., et al. (2009). Experimental and numerical studies of portable PEMFC stack. Electrochimica Acta, 54(10), 2899–2911.

    Article  Google Scholar 

  64. Bernardi, D. M., & Verbrugge, M. W. (1991). Mathematical model of a gas diffusion electrode bonded to a polymer electrolyte. AIChE Journal, 37(8), 1151–1163.

    Article  Google Scholar 

  65. Springer, T. E., Zawodzinski, T. A., & Gottesfeld, S. (1991). Polymer electrolyte fuel cell model. Journal of the Electrochemical Society, 138(8), 2334–2342.

    Article  Google Scholar 

  66. Kamarajugadda, S., & Mazumder, S. (2008). On the implementation of membrane models in computational fluid dynamics calculations of polymer electrolyte membrane fuel cells. Computers & Chemical Engineering, 32(7), 1650–1660.

    Article  Google Scholar 

  67. Zawodzinski, T. A., et al. (1991). Determination of water diffusion coefficients in perfluorosulfonate ionomeric membranes. The Journal of Physical Chemistry, 95(15), 6040–6044.

    Article  Google Scholar 

  68. Zawodzinski, J. T. A., et al. (1993). Water uptake by and transport through Nafion[sup [registered sign]] 117 membranes. Journal of the Electrochemical Society, 140(4), 1041–1047.

    Article  Google Scholar 

  69. Hinatsu, J. T., Mizuhata, M., & Takenaka, H. (1994). Water uptake of perfluorosulfonic acid membranes from liquid water and water vapor. Journal of the Electrochemical Society, 141(6), 1493–1498.

    Article  Google Scholar 

  70. Jalani, N. H., Choi, P., & Datta, R. (2005). TEOM: A novel technique for investigating sorption in proton-exchange membranes. Journal of Membrane Science, 254(1–2), 31–38.

    Article  Google Scholar 

  71. Onishi, L. M., Prausnitz, J. M., & Newman, J. (2007). Water−Nafion equilibria. Absence of Schroeder’s paradox. The Journal of Physical Chemistry B, 111(34), 10166–10173.

    Article  Google Scholar 

  72. Kusoglu, A., Kienitz, B. L., & Weber, A. Z. (2011). Understanding the effects of compression and constraints on water uptake of fuel-cell membranes. Journal of the Electrochemical Society, 158(12), B1504–B1514.

    Article  Google Scholar 

  73. Halim, J., et al. (1994). Characterization of perfluorosulfonic acid membranes by conductivity measurements and small-angle X-ray scattering. Electrochimica Acta, 39(8–9), 1303–1307.

    Article  Google Scholar 

  74. Weber, A. Z., & Newman, J. (2004). Transport in polymer-electrolyte membranes: II. Mathematical model. Journal of the Electrochemical Society, 151(2), A311–A325.

    Article  Google Scholar 

  75. Motupally, S., Becker, A. J., & Weidner, J. W. (2000). Diffusion of water in Nafion 115 membranes. Journal of the Electrochemical Society, 147(9), 3171–3177.

    Article  Google Scholar 

  76. Ye, X., & Wang, C.-Y. (2007). Measurement of water transport properties through membrane-electrode assemblies. Journal of the Electrochemical Society, 154(7), B676–B682.

    Article  Google Scholar 

  77. Ge, S., Yi, B., & Ming, P. (2006). Experimental determination of electro-osmotic drag coefficient in Nafion membrane for fuel cells. Journal of the Electrochemical Society, 153(8), A1443–A1450.

    Article  Google Scholar 

  78. Büchi, F. N., & Scherer, G. G. (1996). In-situ resistance measurements of Nafion® 117 membranes in polymer electrolyte fuel cells. Journal of Electroanalytical Chemistry, 404(1), 37–43.

    Article  Google Scholar 

  79. Buchi, F. N., & Scherer, G. G. (2001). Investigation of the transversal water profile in Nafion membranes in polymer electrolyte fuel cells. Journal of the Electrochemical Society, 148(Copyright 2001, IEE), 183–188.

    Google Scholar 

  80. Kulikovsky, A. A. (2003). Quasi-3D modeling of water transport in polymer electrolyte fuel cells. Journal of the Electrochemical Society, 150(11), A1432–A1439.

    Article  Google Scholar 

  81. Zhang, Z., et al. (2008). Spatial and temporal mapping of water content across Nafion membranes under wetting and drying conditions. Journal of Magnetic Resonance, 194(2), 245–253.

    Article  Google Scholar 

  82. Gebel, G., et al. (2011). The kinetics of water sorption in Nafion membranes: A small-angle neutron scattering study. Journal of Physics: Condensed Matter, 23(23), 234107.

    Google Scholar 

  83. Tabuchi, Y., et al. (2011). Analysis of in situ water transport in Nafion® by confocal micro-Raman spectroscopy. Journal of Power Sources, 196(2), 652–658.

    Article  Google Scholar 

  84. Hara, M., et al. (2011). Temperature dependence of the water distribution inside a Nafion membrane in an operating polymer electrolyte fuel cell. A micro-Raman study. Electrochimica Acta, 58, 449–455.

    Article  Google Scholar 

  85. Hwang, G. S., et al. (2013). Understanding water uptake and transport in Nafion using X-ray microtomography. ACS Macro Letters, 2(4), 288–291.

    Article  Google Scholar 

  86. Tsushima, S., Teranishi, K., & Hirai, S. (2004). Magnetic resonance imaging of the water distribution within a polymer electrolyte membrane in fuel cells. Electrochemical and Solid-State Letters, 7(9), A269–A272.

    Article  Google Scholar 

  87. Tsushima, S., et al. (2010). Investigation of water distribution in a membrane in an operating PEMFC by environmental MRI. Journal of the Electrochemical Society, 157(12), B1814–B1818.

    Article  Google Scholar 

  88. Chen, F., et al. (2004). Transient behavior of water transport in the membrane of a PEM fuel cell. Journal of Electroanalytical Chemistry, 566(1), 85–93.

    Article  Google Scholar 

  89. Berg, P., et al. (2004). Water management in PEM fuel cells. Journal of the Electrochemical Society, 151(3), A341–A353.

    Article  Google Scholar 

  90. Majsztrik, P. W., et al. (2007). Water sorption, desorption and transport in Nafion membranes. Journal of Membrane Science, 301(1–2), 93–106.

    Article  Google Scholar 

  91. Monroe, C. W., et al. (2008). A vaporization-exchange model for water sorption and flux in Nafion. Journal of Membrane Science, 324(1–2), 1–6.

    Article  Google Scholar 

  92. Ge, S., et al. (2005). Absorption, desorption, and transport of water in polymer electrolyte membranes for fuel cells. Journal of the Electrochemical Society, 152(6), A1149–A1157.

    Article  Google Scholar 

  93. Adachi, M. (2010). Proton exchange membrane fuel cells: Water permeation through Nafion (R) membranes. Department of Chemistry-Simon Fraser University.

    Google Scholar 

  94. Adachi, M., et al. (2010). Thickness dependence of water permeation through proton exchange membranes. Journal of Membrane Science, 364(1–2), 183–193.

    Article  Google Scholar 

  95. Adachi, M., et al. (2010). Water permeation through catalyst-coated membranes. Electrochemical and Solid-State Letters, 13(6), B51–B54.

    Article  Google Scholar 

  96. Meng, H., & Wang, C.-Y. (2004). Electron transport in PEFCs. Journal of the Electrochemical Society, 151(3), A358–A367.

    Article  Google Scholar 

  97. Meng, H., & Wang, C. Y. (2005). Multidimensional modelling of polymer electrolyte fuel cells under a current density boundary condition. Fuel Cells, 5(4), 455–462.

    Article  Google Scholar 

  98. Khandelwal, M., & Mench, M. M. (2006). Direct measurement of through-plane thermal conductivity and contact resistance in fuel cell materials. Journal of Power Sources, 161(2), 1106–1115.

    Article  Google Scholar 

  99. Ramousse, J., et al. (2008). Estimation of the effective thermal conductivity of carbon felts used as PEMFC gas diffusion layers. International Journal of Thermal Sciences, 47(1), 1–6.

    Article  Google Scholar 

  100. Sadeghi, E., Djilali, N., & Bahrami, M. (2011). Effective thermal conductivity and thermal contact resistance of gas diffusion layers in proton exchange membrane fuel cells. Part 1: Effect of compressive load. Journal of Power Sources, 196(1), 246–254.

    Article  Google Scholar 

  101. Teertstra, P., Karimi, G., & Li, X. (2011). Measurement of in-plane effective thermal conductivity in PEM fuel cell diffusion media. Electrochimica Acta, 56(3), 1670–1675.

    Article  Google Scholar 

  102. Ji, M., & Wei, Z. (2009). A review of water management in polymer electrolyte membrane fuel cells. Energies, 2(4), 1057–1106.

    Article  Google Scholar 

  103. Bernardi, D. M., & Verbrugge, M. (1992). A mathematical model of the solid polymer electrolyte fuel cell. Journal of the Electrochemical Society, 139.

    Google Scholar 

  104. Baschuk, J. J., & Li, X. (2000). Modelling of polymer electrolyte membrane fuel cells with variable degrees of water flooding. Journal of Power Sources, 86(1), 181–196.

    Article  Google Scholar 

  105. Djilali, N., & Lu, D. (2002). Influence of heat transfer on gas and water transport in fuel cells. International Journal of Thermal Sciences, 41(1), 29–40.

    Article  Google Scholar 

  106. Yan, W.-M., et al. (2004). Analysis of thermal and water management with temperature-dependent diffusion effects in membrane of proton exchange membrane fuel cells (Vol. 129, pp. 127–137).

    Google Scholar 

  107. Song, D., et al. (2006). Transient analysis for the cathode gas diffusion layer of PEM fuel cells. Journal of Power Sources, 159(2), 928–942.

    Article  Google Scholar 

  108. Falcão, D. S., et al. (2011). 1D and 3D numerical simulations in PEM fuel cells. International Journal of Hydrogen Energy, 36.

    Google Scholar 

  109. Gurau, V., Liu, H., & Kakaç, S. (1998). Two-dimensional model for proton exchange membrane fuel cells. AIChE Journal, 44(11), 2410–2422.

    Article  Google Scholar 

  110. Yi, J., & Nguyen, T. (1998). An along-the-channel model for proton exchange membrane fuel cells. Journal of the Electrochemical Society, 145, 1149–1159.

    Article  Google Scholar 

  111. Um, S., Wang, C. Y., & Chen, K. S. (2000). Computational fluid dynamics modeling of proton exchange membrane fuel cells. Journal of the Electrochemical Society, 147(12), 4485–4493.

    Article  Google Scholar 

  112. Siegel, N., et al. (2003). Single domain PEMFC model based on agglomerate catalyst geometry. Journal of Power Sources, 115, 81–89.

    Article  Google Scholar 

  113. Siegel, N., et al. (2004). A two-dimensional computational model of a PEMFC with liquid water transport. Journal of Power Sources, 128, 173–184.

    Article  Google Scholar 

  114. Grujicic, M., & Chittajallu, K. M. (2004). Design and optimization of polymer electrolyte membrane (PEM) fuel cells. Applied Surface Science, 227(1–4), 56–72.

    Article  Google Scholar 

  115. Sui, P. C., & Djilali, N. (2006). Analysis of coupled electron and mass transport in the gas diffusion layer of a PEM fuel cell. Journal of Power Sources, 161(1), 294–300.

    Article  Google Scholar 

  116. Seddiq, M., Khaleghi, H., & Mirzaei, M. (2006). Numerical analysis of gas cross-over through the membrane in a proton exchange membrane fuel cell. Journal of Power Sources, 161(1), 371–379.

    Article  Google Scholar 

  117. Lin, H.-H., et al. (2006). Optimization of key parameters in the proton exchange membrane fuel cell. Journal of Power Sources, 162, 246–254.

    Article  Google Scholar 

  118. Meng, H. (2007). Numerical investigation of transient responses of a PEM fuel cell using a two-phase non-isothermal mixed-domain model. Journal of Power Sources, 171(2), 738–746.

    Article  Google Scholar 

  119. Beale, S., et al. (2009). Two-phase flow and mass transfer within the diffusion layer of a polymer electrolyte membrane fuel cell. Computational Thermal Sciences, 1.

    Google Scholar 

  120. Spalding, D. B. (1984). PHOENICS 84: A multi-dimensional multi-phase general-purpose computer simulator for fluid flow, heat transfer and combustion: 36 lecture panels.

    Google Scholar 

  121. Spalding, D. B. (1981). Numerical computation of multiphase fluid flow and heat transfer. In C. Taylor & K. Morgan (Eds.), Recent advances in numerical methods in fluids (pp. 161–191). Swansea: Pineridge Press.

    Google Scholar 

  122. Pourmahmoud, N., et al. (2011). Three-dimensional numerical analysis of proton exchange membrane fuel cell. Journal of Mechanical Science and Technology, 25(10), 2665–2673.

    Article  Google Scholar 

  123. Meng, H., & Wang, C.-Y. (2004). Large-scale simulation of polymer electrolyte fuel cells by parallel computing. Chemical Engineering Science, 59(16), 3331–3343.

    Article  Google Scholar 

  124. Wu, H., Li, X., & Berg, P. (2009). On the modeling of water transport in polymer electrolyte membrane fuel cells. Electrochimica Acta, 54(27), 6913–6927.

    Article  Google Scholar 

  125. Chiu, H.-C., et al. (2012). A three-dimensional modeling of transport phenomena of proton exchange membrane fuel cells with various flow fields. Applied Energy, 96, 359–370.

    Article  Google Scholar 

  126. Zhou, T., & Liu, H. T. (2001). A general three-dimensional model for proton exchange membrane fuel cells. International Journal of Transport Phenomena, 3, 177–198.

    Google Scholar 

  127. You, L., & Liu, H. (2002). A two-phase flow and transport model for the cathode of PEM fuel cells. International Journal of Heat and Mass Transfer, 45(11), 2277–2287.

    Article  MATH  Google Scholar 

  128. You, L., & Liu, H. (2001). A parametric study of the cathode catalyst layer of PEM fuel cells using a pseudo-homogeneous model. International Journal of Hydrogen Energy, 26(9), 991–999.

    Article  Google Scholar 

  129. Dutta, S., Shimpalee, S., & Van Zee, J. W. (2000). Three-dimensional numerical simulation of straight channel PEM fuel cells. Journal of Applied Electrochemistry, 30, 135–146.

    Article  Google Scholar 

  130. Shimpalee, S., & Dutta, S. (2000). Numerical prediction of temperature distribution in PEM fuel cells. Numerical Heat Transfer, Part A: Applications, 38(2), 111–128.

    Article  Google Scholar 

  131. Sui, P. C., & Djilali, N. (2005). Analysis of water transport in proton exchange membranes using a phenomenological model. Journal of Fuel Cell Science and Technology, 2(3), 149–155.

    Article  Google Scholar 

  132. Mazumder, S. (2005). A generalized phenomenological model and database for the transport of water and current in polymer electrolyte membranes. Journal of the Electrochemical Society, 152(8), A1633–A1644.

    Article  Google Scholar 

  133. Um, S., & Wang, C. Y. (2000). Three dimensional analysis of transport and reaction in PEMFC. In ASME fuel cell division (pp. 19–25). ASME: Orlando, FL.

    Google Scholar 

  134. Um, S., & Wang, C. Y. (2004). Three-dimensional analysis of transport and electrochemical reactions in polymer electrolyte fuel cells. Journal of Power Sources, 125(1), 40–51.

    Article  Google Scholar 

  135. Wang, Y., & Wang, C.-Y. (2005). Modeling polymer electrolyte fuel cells with large density and velocity changes. Journal of the Electrochemical Society, 152(2), A445–A453.

    Article  Google Scholar 

  136. Carnes, B., et al. (2013). Validation of a two-phase multidimensional polymer electrolyte membrane fuel cell computational model using current distribution measurements. Journal of Power Sources, 236, 126–137.

    Article  Google Scholar 

  137. Bvumbe Tatenda, J., et al. (2016). Review on management, mechanisms and modelling of thermal processes in PEMFC. Hydrogen and Fuel Cells, 1(1), 1–20.

    Article  Google Scholar 

  138. Berning, T., Lu, D. M., & Djilali, N. (2002). Three-dimensional computational analysis of transport phenomena in a PEM fuel cell. Journal of Power Sources, 106(1–2), 284–294.

    Article  Google Scholar 

  139. Mazumder, S., & Cole, J. V. (2003). Rigorous 3-D mathematical modeling of PEM fuel cells. Journal of the Electrochemical Society, 150(11), A1503–A1509.

    Article  Google Scholar 

  140. Mazumder, S., & Cole, J. V. (2003). Rigorous 3-D mathematical modeling of PEM fuel cells. Journal of the Electrochemical Society, 150(11), A1510–A1517.

    Article  Google Scholar 

  141. Al-Baghdadi, M. A. R. S. (2008). CFD models for analysis and design of PEM fuel cells. New York: Nova Science Publishers.

    Google Scholar 

  142. Schwarz, D. H., & Beale, S. B. (2009). Calculations of transport phenomena and reaction distribution in a polymer electrolyte membrane fuel cell. International Journal of Heat and Mass Transfer, 52(17–18), 4074–4081.

    Article  MATH  Google Scholar 

  143. Strahl, S., Husar, A., & Franco, A. A. (2014). Electrode structure effects on the performance of open-cathode proton exchange membrane fuel cells: A multiscale modeling approach. International Journal of Hydrogen Energy, 39(18), 9752–9767.

    Article  Google Scholar 

  144. Artemov, V., et al. (2009). A tribute to D. B. Spalding and his contributions in science and engineering. International Journal of Heat and Mass Transfer, 52, 3884–3905.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayodeji Demuren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Demuren, A., Edwards, R.L. (2020). Modeling Proton Exchange Membrane Fuel Cells—A Review. In: Runchal, A. (eds) 50 Years of CFD in Engineering Sciences. Springer, Singapore. https://doi.org/10.1007/978-981-15-2670-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2670-1_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2669-5

  • Online ISBN: 978-981-15-2670-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics