Nothing Special   »   [go: up one dir, main page]

Skip to main content

Dynamics of Deffuant Model in Activity-Driven Online Social Network

  • Conference paper
  • First Online:
Knowledge and Systems Sciences (KSS 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 949))

Included in the following conference series:

  • 651 Accesses

Abstract

In many social system the interactions among the individuals are rapidly changing and are characterized with timing. The dynamics of social interaction constantly affects the development of their opinions. However, most of the opinion evolution models characterize interpersonal opinion in static, structural properties of the network such as degree, cluster and distance. In this paper, an Deffuant opinion model based on the activity-driven network is developed to examine how different activity distribution effects the dynamics of opinion evolution. When the activity distribution complies with power-law distribution or random distribution, phase transition transform from polarization to consensus when threshold is 0.6 and 0.4, respectively. In the process of opinion formation the distribution of opinion clusters’ scales are complying with power-law distribution. Especially, under the power-law distribution the opinion disparity of the two clusters in polarization state is lower than the others, which means that the burst of the activity helps the individuals converging in opinion clusters in values. Finally we show that the speed to reach stable is influenced by the type of activity distribution. The simulation on power-distribution and random distribution need more time steps to get steady state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Le, T.N., Wu, P., Chan, W., et al.: Predicting collective sentiment dynamics from time-series social media. In: International Workshop on Issues of Sentiment Discovery and Opinion Mining, pp. 1–8. ACM (2012)

    Google Scholar 

  2. Sobkowicz, P., Kaschesky, M., Bouchard, G.: Opinion mining in social media: modeling, simulating, and forecasting political opinions in the web. Gov. Inf. Q. 29(4), 470–479 (2012)

    Article  Google Scholar 

  3. Tsytsarau, M., Palpanas, T., Castellanos, M.: Dynamics of news events and social media reaction. In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, pp. 901–910 (2014)

    Google Scholar 

  4. Barabási, A.: The origin of bursts and heavy tails in human dynamics. Nature 435(7039), 207 (2005)

    Article  Google Scholar 

  5. Iribarren, J.L., Moro, E.: Impact of human activity patterns on the dynamics of information diffusion. Phys. Rev. Lett. 103(3), 038702 (2009)

    Article  Google Scholar 

  6. Malmgren, R.D., Stouffer, D.B., Motter, A.E., et al.: A poissonian explanation for heavy tails in e-mail communication. Proc. Natl. Acad. Sci. U. S. A. 105(47), 18153–18158 (2008)

    Article  Google Scholar 

  7. Shang, Y.: Consenseus formation of two-level opinion dynamics. Acta Math. Sci. (Engl. Ser.) 34(4), 1029–1040 (2014)

    Article  MathSciNet  Google Scholar 

  8. Axelrod, R.: The dissemination of culture: a model with local convergence and global polarization. J. Confl. Resolut. 41(2), 203–226 (1997)

    Article  Google Scholar 

  9. Thompson, R.: Radicalization and the use of social media. J. Strat. Secur. 4(4), 167–190 (2011)

    Article  Google Scholar 

  10. Nickerson, R.S.: Confirmation bias: a ubiquitous phenomenon in many guises. Rev. Gen. Psychol. 2(2), 175–220 (1998)

    Article  Google Scholar 

  11. Deffuant, G, Neau, D, Amblard, F.: Mixing beliefs among interacting agents. Adv. Complex Syst. 03(01n04), 0000007 (2000)

    Article  Google Scholar 

  12. Hegselmann, R., Krause, U.: Opinion dynamics and bounded confidence models. Anal. Simul. J. Artif. Soc. Soc. Simul. 5(2), 2 (2002)

    Google Scholar 

  13. Lorenz, J., Urbig, D.: About the power to enforce and prevent consunsus by manipulating communication rules. Adv. Complex Syst. 10(02), 251–269 (2007)

    Article  MathSciNet  Google Scholar 

  14. Weisbuch, G.: From anti-conformism to extremism. J. Artif. Soc. Soc. Simul. 18 (2015)

    Google Scholar 

  15. Malarz, K., Gronek, P., Kulakowski, K.: Zaller-Deffuant model of mass opinion. J. Artif. Soc. Soc. Simul. 14(1), 2 (2011)

    Article  Google Scholar 

  16. Timothy, J.J.: How does propaganda influence the opinion dynamics of a population? Int. J. Mod. Phys. C 27(05) (2016)

    Google Scholar 

  17. Gargiulo, F.: Opinion dynamics in a group-based society. Eur. Phys. Lett. 91(5), 2067–2076 (2010)

    Article  Google Scholar 

  18. Holme, P., Saramäki, J.: Temporal networks. Phys. Rep. 519(3), 97–125 (2012)

    Article  Google Scholar 

  19. Ghoshal, G., Holme, P.: Attractiveness and activity in Internet communities. Phys. Stat. Mech. Appl. 364, 603–609 (2005)

    Article  Google Scholar 

  20. Kossinets, G., Kleinberg, J., Watts, D.: The structure of information pathways in a social communication network. In: Proceeding of 14th ACM International Conference on Knowledge Discovery and Data Mining, pp. 435–443. ACM (2008)

    Google Scholar 

  21. Viswanath, B., Mislove, A., Cha, M., Gummadi, K.P.: On the evolution of user interaction in Facebook. In: Proceedings of the 2nd ACM Workshop on Online Social Networks, pp. 37–42. ACM (2009)

    Google Scholar 

  22. Wilson, C., Boe, B., Sala, A., Puttaswamy, K.P., Zhao, B.Y.: User interactions in social networks and their implications. In: Proceedings of 4th ACM European Conference on Computer Systems, pp. 205–218. ACM (2009)

    Google Scholar 

  23. Bakshy, E., Hofman, J.M., Mason, W.A., et al.: Everyone’s an influencer: quantifying influence on twitter. In: ACM International Conference on Web Search and Data Mining, pp. 65–74. ACM (2004)

    Google Scholar 

  24. Guille, A., Hacid, H., Favre, C., et al.: Information diffusion in online social networks: a survey. ACM Sigmod Rec. 42(2), 17–28 (2013)

    Article  Google Scholar 

  25. Fernández-Gracia, J., Eguíluz, V.M., Miguel, M.S.: Timing interactions in social simulations: the voter model. In: Holme, P., Saramäki, J. (eds.) Temporal Networks. Understanding Complex Systems, pp. 331–352. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36461-7_17

    Chapter  Google Scholar 

  26. Grabowski, A.: Opinion formation in a social network: the role of human activity. Phys. Stat. Mech. Appl. 388(6), 961–966 (2012)

    Article  Google Scholar 

  27. Patterson, S., Bamieh, B.: Interaction-driven opinion dynamics in online social networks. In: The Workshop on Social Media Analytics, pp. 98–105. ACM (2010)

    Google Scholar 

  28. Perra, N., Gonçalves, B., Pastorsatorras, R., et al.: Activity driven modeling of time varying networks. Sci. Rep. 2(6), 469 (2012)

    Article  Google Scholar 

  29. Vespignani, A.: Evolution and Structure of the Internet. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  30. Jalali, Z.S., Rezvanian, A., Meybodi, M.R.: Social network sampling using spanning trees. Int. J. Mod. Phys. C 27(05) (2016)

    Article  MathSciNet  Google Scholar 

  31. Sobkowicz, P., Sobkowicz, A.: Dynamics of hate based Internet user networks. Eur. Phys. J. B 73(4), 633–643 (2010)

    Article  Google Scholar 

  32. Kurmyshev, E., Juárez, H.A., González-Silva, R.A.: Dynamics of bounded confidence opinion in heterogeneous social networks: concord against partial antagonism. Phys. Stat. Mech. Appl. 390(16), 2945–2955 (2011)

    Article  Google Scholar 

  33. Li, D., Han, D., Ma, J., et al.: Opinion dynamics in activity-driven networks. EPL 120(2), 28002 (2017)

    Article  Google Scholar 

  34. Guo, Q., Lei, Y., Jiang, X., et al.: Epidemic spreading with activity-driven awareness diffusion on multiplex network. Chaos Interdiscip. J. Nonlinear Sci. 26(4), 3200 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work was supported in part by the National Natural Science Foundation (grant numbers 71401024, 71371040 and 71801145).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Zhang or Haoxiang Xia .

Editor information

Editors and Affiliations

Ethics declarations

The author(s) declare(s) that there is no conflict of interest regarding the publication of this paper.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, J., Xia, H., Li, P. (2018). Dynamics of Deffuant Model in Activity-Driven Online Social Network. In: Chen, J., Yamada, Y., Ryoke, M., Tang, X. (eds) Knowledge and Systems Sciences. KSS 2018. Communications in Computer and Information Science, vol 949. Springer, Singapore. https://doi.org/10.1007/978-981-13-3149-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3149-7_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3148-0

  • Online ISBN: 978-981-13-3149-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics