Nothing Special   »   [go: up one dir, main page]

Skip to main content

Using machine learning tool in classification of breast cancer

  • Conference paper
  • First Online:
CMBEBIH 2017

Part of the book series: IFMBE Proceedings ((IFMBE,volume 62))

Abstract

This research implements a feed forward back propagation network (FFBPN) for classification of breast cancer cases to malignant or benign. The purpose of the research is to design an Artificial Neural Network (ANN) with high and acceptable level of accuracy by selecting the number of hidden layers, number of neurons in the hidden layer and the type of activation functions in hidden layers. Samples for training and validation of ANN are obtained from Wisconsin Breast Cancer Database (WBCD) which is open access dataset. The dataset contains 699 samples that were distributed to two groups: 599 samples in training setand 100 samples in testing set. Each sample has 9 attributes representing 9 characteristics of breast fine-needle aspirates (FNAs) as inputs of the network. This experiment includes a comparison among the obtained mean square error (MSE) when using three transfer functions: LOGSIG, TANSIG, and PURELINE in neural network architetcures.Impact of different number of layers (1, 2, and 3 layers were used)in ANN architectureon output accuracy was also investigated. Also, this research provides the results of ANN performance for different number of neurons in hidden layer (20, 21, 22, 23, 24 neurons were implemented). The results show that the best network design is that one with three hidden layers, 21 neurons in the hidden layer, and TANSIG as activation function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Klonisch, T., Wiechec, E., Hombach-Klonisch, S., Ande, S. R., Wesselborg, S., Schulze-Osthoff, K., & Los, M. (2008). Cancer stem cell markers in common cancers–therapeutic implications. Trends in molecular medicine14(10), 450-460.

    Google Scholar 

  2. Torre, L. A., Bray, F., Siegel, R. L., Ferlay, J., Lortet-Tieulent, J., & Jemal, A. (2015). Global cancer statistics, 2012. CA: a cancer journal for clinicians, 65(2), 87-108

    Google Scholar 

  3. Chandrasekar, R. M., & Palaniammal, V. (2013). Performance and Evaluation of Data Mining Techniques in Cancer Diagnosis. IOSR Journal of Computer Engineering, 15(5), 39-44. doi:10.9790/0661-1553944.

    Google Scholar 

  4. Cohen, M., & Azaiza, F. (2005). Early breast cancer detection practices, health beliefs, and cancer worries in Jewish and Arab women. Preventive medicine41(5), 852-858.

    Google Scholar 

  5. Etingov, P. V., & Voropai, N. I. (2006, December). Application of fuzzy logic PSS to enhance transient stability in large power systems. In Power Electronics, Drives and Energy Systems, 2006. PEDES’06. International Conference on (pp. 1-9). IEEE.

    Google Scholar 

  6. Techopedia, Artificial neural network, https://www.techopedia.com/definition/5967/artificial-neural-network-ann. Accessed: 4 Feb 2016

  7. Singh, S., & Murthy, T. V. (2013). Neural network-based sensor fault accommodation in flight control system. Journal of Intelligent Systems22(3), 317-333.

    Google Scholar 

  8. Hiyama, T. (1990). Rule-based stabilizer for multi-machine power system. IEEE Transactions on Power Systems5(2), 403-411.

    Google Scholar 

  9. Aljovic, A., Badnjevic, A., Gurbeta, L. (2016, June). Artificial neural networks in the discrimination of Alzheimer’s disease using biomarkers data. In Embedded Computing (MECO), 2016 5th Mediterranean Conference on (pp. 286-289). IEEE.

    Google Scholar 

  10. Gurbeta, L., Sajdinovic, D., Berina, A., & Badnjevic, A. (2016, June). Classification of stress recognition using Artificial Neural Network. In Embedded Computing (MECO), 2016 5th Mediterranean Conference on (pp. 297-300). IEEE.

    Google Scholar 

  11. Halilović, S., Avdihodžić, H., Gurbeta, L. (2016, June). Micro cell culture analog apparatus (ýCCA) output prediction using Artificial Neural Network. In Embedded Computing (MECO), 2016 5th Mediterranean Conference on (pp. 294-296). IEEE.

    Google Scholar 

  12. Fojnica, A., Osmanović, A., & Badnjević, A. (2016, June). Dynamical Model of Tuberculosis-Multiple Strain Prediction based on Artificial Neural Network.In Embedded Computing (MECO), 2016 5th Mediterranean Conference on (pp.290 - 293). IEEE.

    Google Scholar 

  13. Badnjevic, A, Cifrek, M., Koruga, D., Osmankovic, D. (2015) Neuro-fuzzy classification of asthma and chronic obstructive pulmonary disease. BMC Medical Informatics and Decision Making Journal. 15 Suppl 3:S1; doi: 10.1186/1472-6947-15-S2-S1

  14. Badnjevic, A., Cifrek, M., & Koruga, D. (2014). Classification of Chronic Obstructive Pulmonary Disease (COPD) using integrated software suite. In XIII Mediterranean Conference on Medical and Biological Engineering and Computing 2013 (pp. 911-914). Springer International Publishing.

    Google Scholar 

  15. UCIMachine Learning Repository, Breast Cancer Wisconsin (Original) Data Set,’’https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Original). Accessed: 4 Feb 2016

  16. Hafizah, S., Haszlinna, N., Mustaffa, Sallehuddin, R., & Ubaidillah, S.A. (2014). Classification of Liver Cancer Using Artificial Neural Network and Support Vector Machine.

    Google Scholar 

  17. Ahmed, F. E. (2005). Artificial neural networks for diagnosis and survival prediction in colon cancer. Molecular cancer4(1), 29.

    Google Scholar 

  18. B, A.R., Jaleel, J.A., & Salim, S. (2012). Artificial Neural Network Based Detection of Skin Cancer

    Google Scholar 

  19. Devika, C., Amita, S. M.,(2014) Case Study on Classification of Glass using Neural Network Tool in MATLAB. International Journal of Computer Applications® (IJCA) (0975 – 8887), International Conference on Advances in Computer Engineering & Applications (ICACEA) at IMSEC,GZB

    Google Scholar 

  20. Swathi, S., Rizwana, S., Babu, G. A., Kumar, P. S., & Sarma, P. V. G. K. (2012). Classification of Neural Network Structures For Breast Cancer Diagnosis. International Journal of Computer Science and Communication3(1), 227-231.

    Google Scholar 

  21. Shahin, M. A., Maier, H. R., & Jaksa, M. B. (2004). Data division for developing neural networks applied to geotechnical engineering. Journal of Computing in Civil Engineering18(2), 105-114.

    Google Scholar 

  22. Khan, N., Gaurav, D., & Kandl, T. (2013). Performance evaluation of Levenberg-Marquardt technique in error reduction for diabetes condition classification. Procedia Computer Science, 18, 2629-2637.

    Google Scholar 

  23. Rani, K. U. (2010). Parallel approach for diagnosis of breast cancer using neural network technique. International Journal of Computer Applications, 10(3), 1-5.

    Google Scholar 

  24. Elgader, H. A. A., & Hamza, M. H. (2011). Breast Cancer Diagnosis Using Artificial Intelligence Neural Networks. J. Sc. Tech, 12, 159-171.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Layla Abdel-Ilah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Abdel-Ilah, L., Šahinbegović, H. (2017). Using machine learning tool in classification of breast cancer. In: Badnjevic, A. (eds) CMBEBIH 2017. IFMBE Proceedings, vol 62. Springer, Singapore. https://doi.org/10.1007/978-981-10-4166-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4166-2_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4165-5

  • Online ISBN: 978-981-10-4166-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics