Abstract
In Medical field Segmentation of Medical Images is significant for disease diagnose. Image Segmentation divide an image into regions precisely which helps to identify the abnormalities in the Cancer cells for accurate diagnosis. Edge detection is the basic tool for Image Segmentation. Edge detection identifies the discontinuities in an image and locates the image intensity changes. In this paper, an improved Edge detection method with the Fuzzy approach is proposed to segment Cervical Pap Smear Images into Nucleus and Cytoplasm. Four important features of Cervical Pap Smear Images are extracted using proposed Edge detection method. The accuracy of extracted features using proposed method is analyzed and compared with other popular Image Segmentation techniques.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Sulaimana, S.N., Mat-Isab, N.A., Othmanc, N.H., Ahmada, F.: Improvement of features extraction process and classification of cervical cancer for the neuralpap system. Procedia Comput. Sci. 60, 750–759 (2015)
Sajeena, T.A., Jereesh, A.S.: Cervical cancer detection through automatic segmentation and classification of pap smear cells. Int. J. Appl. Eng. Res. 10(18), 39078–39084 (2015). ISSN 0973-4562
Muthukrishnan, R., Radha, M.: Edge detection techniques for image segmentation. Int. J. Comput. Sci. Inf. Technol. (IJCSIT) 3(6) (2011)
El Emary, I.M.M.: On the application of artificial neural networks in analyzing and classifying the human chromosomes. J. Comput. Sci. 2(1), 72–75 (2006)
Mondal, K., Dutta, P., Bhattacharyya, S.: Efficient fuzzy rule base design using image features for image extraction and segmentation. In: Fourth International Conference on Computational Intelligence and Communication Networks (2012)
Mustafa, N., Mat Isa, N.A., Mashor, M.Y., Othman, N.H.: New Features of Cervical Cells for Cervical Cancer Diagnostic System Using Neural Network (2007)
Ghafar, R., Mat-Isa, N.A., Ngah, U.K., Mashor, M.Y., Othman, N.H.: Segmentation of stretched pap smear cytology images using clustering algorithm. In: CDROM Proceedings of World Congress on Medical Physics and Biomedical Engineering (WC2003). Paper no. 2356, vol. 4, Sydney, Australia. 24–29 (2003)
Mat-Isa, N.A., Mashor, M.Y., Othman, N.H.: Seeded region growing features extraction algorithm; its potential use in improving screening for cervical cancer. Int. J. Comput. Internet Manag. 13(1) (2004)
Senthilkumaran, N., Rajesh, R.: Edge detection techniques for image segmentation—a survey of soft computing approaches. Int. J. Recent Trends Eng. Technol. 1(2) (2009)
Tan, K.S., Isa, N.A.M.: Color image segmentation using histogram thresholding—Fuzzy C-meanshybrid approach. Pattern Recogn. (Impact Factor: 3.1). 01/2011; 44(1), 1–15 (2011). doi:10.1016/j.patcog.2010.07.013
Mehena, J., Adhikary, M.C.: Medical image edge detection based on neuro-fuzzy approach. World Acad. Sci. Eng. Technol. Int. J. Comput. Electr. Automa. Control Inf. Eng. 10(1) (2016)
Mondal, K., Dutta, P., Bhattacharyya, S.: Efficient fuzzy rule base design using image features for image extraction and segmentation. In: Fourth International Conference on Computational Intelligence and Communication Networks (2012)
Prasanna, M.K., Rai, S.C.: Fuzzy logic—a comprehensive study. Int. J. Adv. Found. Res. Comput. (IJAFRC) 1(10) (2014). ISSN 2348 – 4853
Raj, A., Srivastava, A., Bhateja, V.: Computer aided detection of brain tumor in magnetic resonance images. Int. J. Eng. Technol. (IACSIT-IJET) 3, 523–532 (2011)
Gupta, A., Ganguly, A., Bhateja, V.: A noise robust edge detector for color images using hilbert transform. In: Proceedings of (IEEE) 3rd International Advance Computing Conference, pp. 1207–1212, February (2013)
Dagar, N.S., Dahiya, P.K.: Soft computing techniques for edge detection problem: a state-of-the-art review. Int. J. Comput. Appl. (0975–8887) 136(12) (2016)
Jahne, B., Haubecker, H., Geibler, P.: Handbook of Computer Vision and Applications, vol. 2. Academic Press Publishers (1999)
Divya, B., Shanthi, T.K., Sethuramalingam, T.K.: Edge detection technique by fuzzy logic CLA and canny edge detector using fuzzy image processing. Int. J. Recent Innov. Trends Comput. Commun. 2(4), 954–957 (2014). ISSN 2321–8169
Tizhoosh, H.R.: Fuzzy Image Processing (in German). Springer, Berlin (1997)
Manikandan, G., Sairam, N., Harish, V., Saikumar, N.: Fuzzy logic—a comprehensive study. Int. J. Adv. Found. Res. Comput. (IJAFRC) 1(10), (2014). ISSN 2348 – 4853
dos Santos Schwaab, A.A., Nassar, S.M., de Freitas Filho, P.J.: Automatic methods for generation of type-1 and interval type-2 fuzzy membership functions. J. Comput. Sci. 11(9), 976–987 (2015)
Alikhani, A., Ahmadi, A., Alirezaee, S., Ahmadi, M., Erfani, S.: A CMOS implementation of programmable gaussian fuzzifier. Canadian Conference on Electrical and Computer Engineering (2015)
http://mathbits.com/MathBits/TISection/Statistics2/correlation.htm (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Hemalatha, K., Usha Rani, K. (2018). Feature Extraction of Cervical Pap Smear Images Using Fuzzy Edge Detection Method. In: Satapathy, S., Bhateja, V., Raju, K., Janakiramaiah, B. (eds) Data Engineering and Intelligent Computing. Advances in Intelligent Systems and Computing, vol 542 . Springer, Singapore. https://doi.org/10.1007/978-981-10-3223-3_8
Download citation
DOI: https://doi.org/10.1007/978-981-10-3223-3_8
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-10-3222-6
Online ISBN: 978-981-10-3223-3
eBook Packages: EngineeringEngineering (R0)