Abstract
Some of important methods for signal processing, such as principal component analysis (PCA), independent component analysis (ICA), non-negative matrix factorization (NMF), and sparse representation (SR), can be discussed in a unified framework where a data matrix is decomposed into a product of two specific matrices. Differences of those methods are understood as different constraints on decomposed matrices. Characteristics of those methods are discussed and compared by giving examples of image processing.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aharon, M., Elad, M., & Bruckstein, A. (2006). K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing, 54(11), 4311–4322.
Berry, M. W., & Browne, M. (2005). Email surveillance using non-negative matrix factorization. Computational and Mathematical Organization Theory, 11(3), 249–264.
Candès, E. J., & Tao, T. (2005). Decoding by linear programming. IEEE Transactions on Information Theory, 51(12), 4203–4215.
Candès, E. J., & Tao, T. (2007). The Dantzig selector: Statistical estimation when p is much larger than n. The Annals of Statistics, 35(6), 2313–2351.
Chartrand, R., & Yin, W. (2008). Iteratively reweighted algorithms for compressive sensing. In: ICASSP (pp. 3869–3872).
Cichocki, A., Zdunek, R., Phan, A.H., & Amari, S. (2009). Nonnegative matrix and tensor factorizations: Applications to exploratory multi-way data analysis and blind source separation. Wiley.
Daubechies, I., DeVore, R., Fornasier, M., & Güntürk, C. S. (2010). Iteratively reweighted least squares minimization for sparse recovery. Communications on Pure and Applied Mathematics, 63(1), 1–38.
Donoho, D. L. (2006). Compressed sensing. IEEE Transactions on Information Theory, 52(4), 1289–1306.
Efron, B., Hastie, T., Johnstone, I., & Tibshirani, R. (2004). Least angle regression. The Annals of Statistics, 32(2), 407–499.
Elad, M., & Aharon, M. (2006). Image denoising via sparse and redundant representations over learned dictionaries. IEEE Transactions on Image Processing, 15(12), 3736–3745.
Engan, K., Aase, S. O., & Hus\(\phi \)y, J. H. (1999). Method of optimal directions for frame design. In: ICASSP (pp. 2443–2446).
Fadili, M. J., Starck, J. L., Bobin, J., & Moudden, Y. (2010). Image decomposition and separation using sparse representations: An overview. Proceedings of the IEEE, 98(6), 983–994.
Fujimoto, Y., & Murata, N. (2012). Nonnegative matrix factorization via generalized product rule and its application for classification. LVA/ICA, LNCS, 7191, 263–271.
Harman, H. H. (1976). Modern Factor Analysis (3rd ed.). University of Chicago Press.
Hoyer, P. O. (2004). Non-negative matrix factorization with sparseness constraints. Journal of Machine Learning Research, 5, 1457–1469.
Hyvärinen, A., Karhunen, J., & Oja, E. (2001). Independent Component Analysis. Wiley.
Jolliffe, I. T. (2002). Principal Component Analysis (2nd ed.). Springer Series in Statistics. New York: Springer.
Kato, T., Hino, H., & Murata, N. (2015). Multi-frame image super resolution based on sparse coding. Neural Networks, 66, 64–78.
Koren, Y., Bell, R., & Volinsky, C. (2009). Matrix factorization techniques for recommender systems. Computer, 42(8), 30–37.
Lee, H., Battle, A., Raina, R., & Ng, A. Y. (2006). Efficient sparse coding algorithms. Advances in Neural Information Processing Systems, 19, 801–808.
Lee, D. D., & Seung, H. S. (1999). Learning the parts of objects by non-negative matrix factorization. Nature, 401, 788–791.
Lee, D. D., & Seung, H. S. (2000). Algorithms for non-negative matrix factorization. Advances in Neural Information Processing Systems, 13, 556–562.
Li, S. Z. (2009). Markov Random Field Modeling in Image Analysis: Advances in Pattern Recognition. London: Springer.
Mairal, J., Elad, M., & Sapiro, G. (2008). Sparse representation for color image restoration. IEEE Transactions on Image Processing, 17(1), 53–69.
Natarajan, B. K. (1995). Sparse approximate solutions to linear systems. SIAM Journal on Computing, 24(2), 227–234.
Olshausen, B.A., & Field, D.J. (1997). Sparse coding with an overcomplete basis set: A strategy employed by v1?. Vision Research, 37(23), 3311–3325.
Olshausen, B. A., & Field, D. J. (1996). Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381, 607–609.
Paatero, P., & Tapper, U. (1994). Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics, 5(2), 111–126.
Pati, Y., Rezaiifar, R., & Krishnaprasad, P. (1993). Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition. Signals, Systems and Computers, 1, 40–44.
Phillips, P. J., Wechsler, H., Huang, J., & Rauss, P. J. (1998). The feret database and evaluation procedure for face-recognition algorithms. Image and Vision Computing, 16, 295–306.
Shashua, A., & Hazan, T. (2005). Non-negative tensor factorization with applications to statistics and computer vision. In ICML, (pp. 792–799).
Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society, Series B, 58(1), 267–288.
Turk, M., & Pentland, A. (1991). Eigenfaces for recognition. Journal of Cognitive Neuroscience, 3(1), 71–86.
Wright, J., Yang, A. Y., Ganesh, A., Sastry, S. S., & Ma, Y. (2009). Robust face recognition via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(2), 210–227.
Yang, J., Wright, J., Huang, T. S., & Ma, Y. (2010). Image super-resolution via sparse representation. IEEE Transactions on Image Processing, 19(11), 2861–2873.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 The Author(s)
About this chapter
Cite this chapter
Murata, N. (2016). Matrix Factorization for Image Processing. In: Sakata, T. (eds) Applied Matrix and Tensor Variate Data Analysis. SpringerBriefs in Statistics(). Springer, Tokyo. https://doi.org/10.1007/978-4-431-55387-8_4
Download citation
DOI: https://doi.org/10.1007/978-4-431-55387-8_4
Published:
Publisher Name: Springer, Tokyo
Print ISBN: 978-4-431-55386-1
Online ISBN: 978-4-431-55387-8
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)