Nothing Special   »   [go: up one dir, main page]

Skip to main content

Matrix Factorization for Image Processing

  • Chapter
  • First Online:
Applied Matrix and Tensor Variate Data Analysis

Part of the book series: SpringerBriefs in Statistics ((JSSRES))

  • 2482 Accesses

Abstract

Some of important methods for signal processing, such as principal component analysis (PCA), independent component analysis (ICA), non-negative matrix factorization (NMF), and sparse representation (SR), can be discussed in a unified framework where a data matrix is decomposed into a product of two specific matrices. Differences of those methods are understood as different constraints on decomposed matrices. Characteristics of those methods are discussed and compared by giving examples of image processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aharon, M., Elad, M., & Bruckstein, A. (2006). K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing, 54(11), 4311–4322.

    Article  Google Scholar 

  2. Berry, M. W., & Browne, M. (2005). Email surveillance using non-negative matrix factorization. Computational and Mathematical Organization Theory, 11(3), 249–264.

    Article  MATH  Google Scholar 

  3. Candès, E. J., & Tao, T. (2005). Decoding by linear programming. IEEE Transactions on Information Theory, 51(12), 4203–4215.

    Article  MATH  Google Scholar 

  4. Candès, E. J., & Tao, T. (2007). The Dantzig selector: Statistical estimation when p is much larger than n. The Annals of Statistics, 35(6), 2313–2351.

    Article  MathSciNet  MATH  Google Scholar 

  5. Chartrand, R., & Yin, W. (2008). Iteratively reweighted algorithms for compressive sensing. In: ICASSP (pp. 3869–3872).

    Google Scholar 

  6. Cichocki, A., Zdunek, R., Phan, A.H., & Amari, S. (2009). Nonnegative matrix and tensor factorizations: Applications to exploratory multi-way data analysis and blind source separation. Wiley.

    Google Scholar 

  7. Daubechies, I., DeVore, R., Fornasier, M., & Güntürk, C. S. (2010). Iteratively reweighted least squares minimization for sparse recovery. Communications on Pure and Applied Mathematics, 63(1), 1–38.

    Article  MathSciNet  MATH  Google Scholar 

  8. Donoho, D. L. (2006). Compressed sensing. IEEE Transactions on Information Theory, 52(4), 1289–1306.

    Article  MathSciNet  MATH  Google Scholar 

  9. Efron, B., Hastie, T., Johnstone, I., & Tibshirani, R. (2004). Least angle regression. The Annals of Statistics, 32(2), 407–499.

    Google Scholar 

  10. Elad, M., & Aharon, M. (2006). Image denoising via sparse and redundant representations over learned dictionaries. IEEE Transactions on Image Processing, 15(12), 3736–3745.

    Article  MathSciNet  Google Scholar 

  11. Engan, K., Aase, S. O., & Hus\(\phi \)y, J. H. (1999). Method of optimal directions for frame design. In: ICASSP (pp. 2443–2446).

    Google Scholar 

  12. Fadili, M. J., Starck, J. L., Bobin, J., & Moudden, Y. (2010). Image decomposition and separation using sparse representations: An overview. Proceedings of the IEEE, 98(6), 983–994.

    Article  Google Scholar 

  13. Fujimoto, Y., & Murata, N. (2012). Nonnegative matrix factorization via generalized product rule and its application for classification. LVA/ICA, LNCS, 7191, 263–271.

    Google Scholar 

  14. Harman, H. H. (1976). Modern Factor Analysis (3rd ed.). University of Chicago Press.

    Google Scholar 

  15. Hoyer, P. O. (2004). Non-negative matrix factorization with sparseness constraints. Journal of Machine Learning Research, 5, 1457–1469.

    Google Scholar 

  16. Hyvärinen, A., Karhunen, J., & Oja, E. (2001). Independent Component Analysis. Wiley.

    Google Scholar 

  17. Jolliffe, I. T. (2002). Principal Component Analysis (2nd ed.). Springer Series in Statistics. New York: Springer.

    Google Scholar 

  18. Kato, T., Hino, H., & Murata, N. (2015). Multi-frame image super resolution based on sparse coding. Neural Networks, 66, 64–78.

    Article  Google Scholar 

  19. Koren, Y., Bell, R., & Volinsky, C. (2009). Matrix factorization techniques for recommender systems. Computer, 42(8), 30–37.

    Article  Google Scholar 

  20. Lee, H., Battle, A., Raina, R., & Ng, A. Y. (2006). Efficient sparse coding algorithms. Advances in Neural Information Processing Systems, 19, 801–808.

    Google Scholar 

  21. Lee, D. D., & Seung, H. S. (1999). Learning the parts of objects by non-negative matrix factorization. Nature, 401, 788–791.

    Article  Google Scholar 

  22. Lee, D. D., & Seung, H. S. (2000). Algorithms for non-negative matrix factorization. Advances in Neural Information Processing Systems, 13, 556–562.

    Google Scholar 

  23. Li, S. Z. (2009). Markov Random Field Modeling in Image Analysis: Advances in Pattern Recognition. London: Springer.

    Google Scholar 

  24. Mairal, J., Elad, M., & Sapiro, G. (2008). Sparse representation for color image restoration. IEEE Transactions on Image Processing, 17(1), 53–69.

    Article  MathSciNet  Google Scholar 

  25. Natarajan, B. K. (1995). Sparse approximate solutions to linear systems. SIAM Journal on Computing, 24(2), 227–234.

    Article  MathSciNet  MATH  Google Scholar 

  26. Olshausen, B.A., & Field, D.J. (1997). Sparse coding with an overcomplete basis set: A strategy employed by v1?. Vision Research, 37(23), 3311–3325.

    Google Scholar 

  27. Olshausen, B. A., & Field, D. J. (1996). Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381, 607–609.

    Article  Google Scholar 

  28. Paatero, P., & Tapper, U. (1994). Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics, 5(2), 111–126.

    Article  Google Scholar 

  29. Pati, Y., Rezaiifar, R., & Krishnaprasad, P. (1993). Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition. Signals, Systems and Computers, 1, 40–44.

    Article  Google Scholar 

  30. Phillips, P. J., Wechsler, H., Huang, J., & Rauss, P. J. (1998). The feret database and evaluation procedure for face-recognition algorithms. Image and Vision Computing, 16, 295–306.

    Article  Google Scholar 

  31. Shashua, A., & Hazan, T. (2005). Non-negative tensor factorization with applications to statistics and computer vision. In ICML, (pp. 792–799).

    Google Scholar 

  32. Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society, Series B, 58(1), 267–288.

    MathSciNet  MATH  Google Scholar 

  33. Turk, M., & Pentland, A. (1991). Eigenfaces for recognition. Journal of Cognitive Neuroscience, 3(1), 71–86.

    Article  Google Scholar 

  34. Wright, J., Yang, A. Y., Ganesh, A., Sastry, S. S., & Ma, Y. (2009). Robust face recognition via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(2), 210–227.

    Article  Google Scholar 

  35. Yang, J., Wright, J., Huang, T. S., & Ma, Y. (2010). Image super-resolution via sparse representation. IEEE Transactions on Image Processing, 19(11), 2861–2873.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The author greatly appreciates Dr. Hideitsu Hino of University of Tsukuba and Mr. Toshiyuki Kato of Waseda University for their helpful comments and figures in Sects. 4.2 and 4.5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noboru Murata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Murata, N. (2016). Matrix Factorization for Image Processing. In: Sakata, T. (eds) Applied Matrix and Tensor Variate Data Analysis. SpringerBriefs in Statistics(). Springer, Tokyo. https://doi.org/10.1007/978-4-431-55387-8_4

Download citation

Publish with us

Policies and ethics