Nothing Special   »   [go: up one dir, main page]

Skip to main content

Predicting Protein Interactions

  • Protocol
  • First Online:
Hydrocarbon and Lipid Microbiology Protocols

Part of the book series: Springer Protocols Handbooks ((SPH))

  • 734 Accesses

Abstract

Since protein interactions are at the basis of all cellular processes, knowing the interaction network around a protein of interest provides a lot of information on its functioning. It also allows inferring the function of hypothetical proteins, based on those of their interactors. On a larger scale, knowing the whole interactome of a given organism allows studying its biology from a systemic perspective, a tactic which is increasingly more used, for example, to approach diseases. Together with the time-consuming, expensive, and error-prone experimental methods for determining protein interactions, there are a number of computational approaches that are now often used as a complement for the first. They can, for example, target proteins difficult for the experimental techniques or simply provide additional evidences of interaction. These methodologies are mature enough, both in terms of accuracy and easiness of usage to be incorporated into the standard toolboxes of molecular biologists.

The protocols below describe in detail the practical usage of two web-based tools for predicting protein interactions from raw sequence information. These tools provide predictions based on different approaches, whose eventual agreement provides additional support for the predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Shoemaker BA, Panchenko AR (2007) Deciphering protein-protein interactions. Part I. Experimental techniques and databases. PLoS Comput Biol 3(3), e42

    Article  PubMed  PubMed Central  Google Scholar 

  2. Jeong H, Mason SP, Barabási AL, Oltvai ZN (2001) Lethality and centrality in protein networks. Nature 411:41–42

    Article  CAS  PubMed  Google Scholar 

  3. Barabasi AL, Oltvai ZN (2004) Network biology: understanding the cell's functional organization. Nat Rev Genet 5(2):101–113

    Article  CAS  PubMed  Google Scholar 

  4. Zanzoni A, Soler-Lopez M, Aloy P (2009) A network medicine approach to human disease. FEBS Lett 583(11):1759–1765

    Article  CAS  PubMed  Google Scholar 

  5. Cho DY, Kim YA, Przytycka TM (2012) Network biology approach to complex diseases. PLoS Comp Biol 8(12), e1002820

    Article  CAS  Google Scholar 

  6. Harrington ED, Jensen LJ, Bork P (2008) Predicting biological networks from genomic data. FEBS Lett 582(8):1251–1258

    Article  CAS  PubMed  Google Scholar 

  7. Shoemaker BA, Panchenko AR (2007) Deciphering protein-protein interactions. Part II. Computational methods to predict protein and domain interaction partners. PLoS Comput Biol 3(4), e43

    Article  PubMed  PubMed Central  Google Scholar 

  8. Petrey D, Honig B (2014) Structural Bioinformatics of the Interactome. Annu Rev Biophys 43:193–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. von Mering C, Krause R, Snel B, Cornell M, Oliver SG, Fields S, Bork P (2002) Comparative assessment of large scale data sets of protein-protein interactions. Nature 417:399–403

    Article  Google Scholar 

  10. Lee I, Date SV, Adai AT, Marcotte EM (2004) A probabilistic functional network of yeast genes. Science 306(5701):1555–1558

    Article  CAS  PubMed  Google Scholar 

  11. Havugimana PC, Hart GT, Nepusz T, Yang H, Turinsky AL, Li Z, Wang PI, Boutz DR, Fong V, Phanse S, Babu M, Craig SA, Hu P, Wan C, Vlasblom J, Dar VU, Bezginov A, Clark GW, Wu GC, Wodak SJ, Tillier ER, Paccanaro A, Marcotte EM, Emili A (2012) A census of human soluble protein complexes. Cell 150(5):1068–1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tabach Y, Golan T, Hernandez-Hernandez A, Messer AR, Fukuda T, Kouznetsova A, Liu JG, Lilienthal I, Levy C, Ruvkun G (2013) Human disease locus discovery and mapping to molecular pathways through phylogenetic profiling. Mol Syst Biol 9:692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Enright AJ, Iliopoulos I, Kyrpides NC, Ouzounis CA (1999) Protein interaction maps for complete genomes based on gene fusion events. Nature 402:86–90

    Article  CAS  PubMed  Google Scholar 

  14. Dandekar T, Snel B, Huynen M, Bork P (1998) Conservation of gene order: a fingerprint of proteins that physically interact. Trends Biochem Sci 23:324–328

    Article  CAS  PubMed  Google Scholar 

  15. Pazos F, Valencia A (2008) Protein co-evolution, co-adaptation and interactions. EMBO J 27(20):2648–2655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Juan D, Pazos F, Valencia A (2013) Emerging methods in protein co-evolution. Nat Rev Genet 14(4):249–261

    Article  PubMed  Google Scholar 

  17. Pellegrini M, Marcotte EM, Thompson MJ, Eisenberg D, Yeates TO (1999) Assigning protein functions by comparative genome analysis: Protein phylogenetic profiles. Proc Natl Acad Sci USA 96:4285–4288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Date SV, Marcotte EM (2003) Discovery of uncharacterized cellular systems by genome-wide analysis of functional linkages. Nat Biotechnol 21(9):1055–1062

    Article  CAS  PubMed  Google Scholar 

  19. Pazos F, Valencia A (2001) Similarity of phylogenetic trees as indicator of protein-protein interaction. Protein Eng 14:609–614

    Article  CAS  PubMed  Google Scholar 

  20. Juan D, Pazos F, Valencia A (2008) High-confidence prediction of global interactomes based on genome-wide coevolutionary networks. Proc Natl Acad Sci USA 105(3):934–939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. von Mering C, Huynen M, Jaeggi D, Schmidt S, Bork P, Snel B (2003) STRING: a database of predicted functional associations between proteins. Nucleic Acids Res 31:258–261

    Article  Google Scholar 

  22. Ochoa D, Pazos F (2010) Studying the co-evolution of protein families with the Mirrortree web server. Bioinformatics 26(10):1370–1371

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florencio Pazos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Pazos, F., de Juan, D. (2015). Predicting Protein Interactions. In: McGenity, T., Timmis, K., Nogales Fernández, B. (eds) Hydrocarbon and Lipid Microbiology Protocols. Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8623_2015_113

Download citation

  • DOI: https://doi.org/10.1007/8623_2015_113

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49309-0

  • Online ISBN: 978-3-662-49310-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics