Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Characterization of evolutionary changes in hemagglutinin of influenza H1N1 virus: a computational analysis

  • Original Article
  • Published:
VirusDisease Aims and scope Submit manuscript

Abstract

Influenza virus continues to evolve due to changes in the genome and the new strain of virus is more pathogenic then the previous strain. These changes may also help the virus to cross specie barrier and may also affect the binding pattern of virus.The main theme of the current study is the identification of changes in the hemagglutinin sequence of H1N1 virus from 1960 to 2011 and also how these changes affect the binding properties of virus. From 1960 to 2000 following important changes were observed: Ala198Asp and Gly225Glu in 1980; and Gly225Asp in 1999. From 1999 to 2011 many changes were observed, most of the changes were transient, but two of the changes, Gly225Asp and Ala227Glu, were consistent in the period of 1999–2010. These residues make the binding stronger. The important conserved residues are Asp190, Tyr98, His183 and Gln226. The current study will provide an understanding how virus evolve with the passage of time. The current study also helps to understand the changes in the binding pattern of virus. It will also help for the identification of new therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Allinger NL. Conformational analysis. 130. MM2. A hydrocarbon force field utilizing V1 and V2 torsional terms. J Am Chem Soc. 1977;99:8127–34.

    Article  CAS  Google Scholar 

  2. Chan PK. Outbreak of avian influenza A(H5N1) virus infection in Hong Kong in 1997. Clin Infect Dis. 2002;34:58–64.

    Article  Google Scholar 

  3. Chang SC, Cheng YY, Shih SR. Avian influenza virus: the threat of a pandemic. Chang Gung Med J. 2006;29:130–4.

    PubMed  Google Scholar 

  4. Chen H, Li Y, Li Z, Shi J, Shinya K, Deng G, Qi Q, Tian G, Fan S, Zhao H, Sun Y, Kawaoka Y. Properties and dissemination of H5N1 viruses isolated during an influenza outbreak in migratory waterfowl in western China. J Virol. 2006;80(12):5976–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. De Vries RP, De Vries E, Moore KS, Rigter A, Rottier PJ, De Haan CA. Only two residues are responsible for the dramatic difference in receptor binding between swine and new pandemic H1 hemagglutinin. J Biol Chem. 2011;286(7):5868–75.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Earn DJD, Dushoff J, Levin SA. Ecology and evolution of the flu. Trends Ecol Evol. 2002;17:334–40.

    Article  Google Scholar 

  7. Enami M, Fukuda R, Ishihama A. Transcription and replication of eight RNA segments of influenza virus. Virology. 1985;142:68–77.

    Article  CAS  PubMed  Google Scholar 

  8. Gambaryan AS, Tuzikov AB, Pazynina GV, Webster RG, Matrosovich MN, Bovin NV. H5N1 chicken influenza viruses display a high binding affinity for Neu5Acalpha2-3Galbeta1-4(6-HSO3)Glc-NAc-containing receptors. Virology. 2004;326:310–6.

    Article  CAS  PubMed  Google Scholar 

  9. Gamblin SJ, Haire LF, Russell RJ, Stevens SJ, Xiao B, Ha Y, Vasisht N, Steinhauer DA, Daniels RS, Elliot A, Wiley DA, Skehel JJ. The structure and receptor binding properties of the 1918 influenza hemagglutinin. Science. 2004;303:1838–42.

    Article  CAS  PubMed  Google Scholar 

  10. Garten RJ, Davis CT, Russell CA, Shu B, Lindstrom S, Balish A, Sessions WM, Xu X, Skepner E, Deyde V, Okomo-Adhiambo M, Gubareva L, Barnes J, Smith CB, Emery SL, Hillman MJ, Rivailler P, Smagala J, De Graaf M, Burke DF, Fouchier RA, Pappas C, Alpuche-Aranda CM, Lopez-Gatell H, Olivera H, Lopez I, Myers CA, Faix D, Blair PJ, Yu C, Keene KM, Dotson J, Boxrud D, Sambol AR, Abid SH, St George K, Bannerman T, Moore AL, Stringer DJ, Blevins P, Demmler-Harrison GJ, Ginsberg M, Kriner P, Waterman S, Smole S, Guevara HF, Belongia EA, Clark PA, Beatrice ST, Donis R, Katz J, Finelli L, Bridges CB, Shaw M, Jernigan DB, Uyeki TM, Smith DJ, Klimov AI, Cox NJ. Antigenic genetic characteristics of swine-origin 2009 A (H1N1) influenza viruses circulating in humans. Science. 2009;325:197–201.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Hay AJ, Gregory V, Douglas AR, Lin YP. The evolution of human influenza viruses. Philos Trans R Soc Lond B Biol Sci. 2001;356:1861–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Korteweg CYL, Hsueh W, Gu J. Avian influenza receptor expression in H5N1-infected and noninfected human tissues. FASEB J. 2008;22:733–40.

    PubMed  Google Scholar 

  13. Lamb RA, Choppin PW. The gene structure and replication of influenza virus. Annu Rev Biochem. 1983;52:467–506.

    Article  CAS  PubMed  Google Scholar 

  14. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23:2947–8.

    Article  CAS  PubMed  Google Scholar 

  15. Matrosovich M, Tuzikov A, Bovin N, Gambaryan A, Klimov A, Castrucci MR, Donatelli I, Kawaoka Y. Early alterations of the receptor-binding properties of H1, H2, and H3 avian influenza virus hemagglutinins after their introduction into mammals. Virology. 2000;74:8502–12.

    Article  CAS  Google Scholar 

  16. Newman AP, Reisdorf E, Beinemann J, Uyeki TM, Balish A, Shu B, Lindstrom S, Achenbach J, Smith C, Davis JP. Human case of swine influenza A (H1N1) triplereassortant virus infection. Emerg Infect Dis. 2008;14:1470–2.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Nunthaboot N, Rungrotmongkol T, MalaisreeM Kaiyawet N, Decha P, Sompornpisut P, Poovorawan Y, Hannongbua S. Evolution of human receptor binding affinity of H1N1 hemagglutinins from 1918 to 2009 pandemic influenza A virus. J Chem Inf Model. 2010;50:1410–7.

    Article  CAS  PubMed  Google Scholar 

  18. Parrish CR, Kawaoka Y. The origins of new pandemic viruses: the acquisition of new host ranges by canine parvovirus and influenza A viruses. Annu Rev Microbiol. 2005;59:553–86.

    Article  CAS  PubMed  Google Scholar 

  19. Reid AH, Janczewski AT, Lourens MR, Elliot JA, Daniels SR, Berry CL, Oxford JS, Taubenberger KJ. 1918 influenza pandemic caused by highly conserved viruses with two receptor-binding variants. Emerg Infect Dis. 2003;9:10.

    Article  Google Scholar 

  20. Rogers GN, Daniels RS, Skehel JJ, Wiley DC, Wang XF, Higa HH, Paulson JC. Host-mediated selection of influenza virus receptor variants. Sialic acid-alpha 2, 6Gal-specific clones of A/duck/Ukraine/1/63 revert to sialic acid-alpha 2, 3Gal-specific wild type in vivo. J Biol Chem. 1985;260:7362–7.

    CAS  PubMed  Google Scholar 

  21. Rossman JS, Lamb RA. Influenza virus assembly and budding. Virology. 2011;15:229–36.

    Article  Google Scholar 

  22. Russel RJ, Haire LF, Stevens DJ, Collins PJ, Lin YP, Blackburn GM, Hay AJ, Gamblin SJ, Skehel JJ. The structure of H5N1 avian influenza neuraminidase suggests new opportunities for drug design. Nature. 2006;7:45–9.

    Article  Google Scholar 

  23. Skehel JJ, Wiley DC. Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu Rev Biochem. 2009;69:531–69.

    Article  Google Scholar 

  24. Taubenberger JK, Hultin VJ, Morens MD. Discovery and characterization of the 1918 pandemic influenza virus in historical context. Antivir Ther. 2007;12((4 Pt B)):581–91.

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Van RK. Avian and swine influenza viruses: our current understanding of the zoonotic risk. Vet Res. 2007;38:243–60.

    Article  Google Scholar 

  26. Wagner R, Matrosovich M, Klenk HD. Functional balance between haemagglutinin and neuraminidase in influenza virus infections. Rev Med Virol. 2006;12:159–66.

    Article  Google Scholar 

  27. Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ. Jalview version 2: a multiple sequence alignment and analysis workbench. Bioinformatics. 2009;25:1189–91.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y. Evolution and ecology of influenza A viruses. Microbiol Rev. 1992;56(1):152–79.

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaira Rehman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rehman, Z., Zafar, R., Amir, U. et al. Characterization of evolutionary changes in hemagglutinin of influenza H1N1 virus: a computational analysis. VirusDis. 27, 34–40 (2016). https://doi.org/10.1007/s13337-015-0294-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13337-015-0294-4

Keywords

Navigation