Abstract
The chaotic maps posses high parameter sensitivity, random-like behavior and one-way computations, which favor the construction of cryptographic hash functions. In this paper, we propose to present a novel hash function scheme which uses multiple chaotic maps to generate efficient variable-sized hash functions. The message is divided into four parts, each part is processed by a different 1D chaotic map unit yielding intermediate hash code. The four codes are concatenated to two blocks, then each block is processed through 2D chaotic map unit separately. The final hash value is generated by combining the two partial hash codes. The simulation analyses such as distribution of hashes, statistical properties of confusion and diffusion, message and key sensitivity, collision resistance and flexibility are performed. The results reveal that the proposed anticipated hash scheme is simple, efficient and holds comparable capabilities when compared with some recent chaos-based hash algorithms.
Similar content being viewed by others
References
Konheim, A. G. (2010). Hashing in computer science: Fifty years of slicing and dicing. New York: Wiley.
Preneel, B. (1993). Analysis and design of cryptographic hash functions. Ph.D. Thesis, Katholieke Universiteit Leuven.
AlAhmad, M. A., & Alshaikhli, I. F. (2013). Broad view of cryptographic hash functions. International Journal of Computer Science Issues, 10(4), 239–246.
Xiao, D., Liao, X., & Deng, S. (2011). Chaos based hash function, chaos-based cryptography. Berlin: Springer.
Katz, J., & Lindell, Y. (2014). Introduction to modern cryptography. Boca Raton: CRC Press.
Rivest, R. L. (1991). The MD4 message digest algorithm. Lecture Notes in Computer Science, 537, 303–311.
Rivest, R. (1992). The MD5 message-digest algorithm. RFC: IETF Network Working Group.
FIPS 180. (1993). Secure Hash Standard, federal information processing standard (FIPS). Washington DC: National Institute of Standards and Technology.
FIPS 180-1. (1995). Secure Hash Standard, federal information processing standard (FIPS). Washington DC: National Institute of Standards and Technology.
Menezes, A. J., Oorschot, P. C. V., & Vanstone, S. A. (1997). Handbook of applied cryptography. Boca Raton: CRC Press.
Preneel, B., Govaerts, R., & Vandewalle, J. (1994). Hash functions based on block ciphers A synthetic approach. Lecture Notes in Computer Science, 773, 368–378.
Wang, X., Feng, D., Lai, X., & Yu, H. (2004). Collisions for hash functions MD4, MD5, HAVAL-128 and RIPEMD. Cryptology ePrint Archive, report 2004/199.
Wang, X. Y., Lai, X. J., Feng, D. G., Chen, H., & Yu, X. Y. (2005). Cryptanalysis of the Hash function MD4 and RIPEMD. Lecture Notes in Computer Science, 3494, 1–18.
Wang, X. Y., & Yu, H. B. (2005). How to break MD5 and other Hash functions. Lecture Notes in Computer Science, 3494, 19–35.
Liang, J., & Lai, X. J. (2007). Improved collision attack on hash function MD5. Journal of Computer Science and Technology, 22(1), 79–87.
Biham, E., Chen, R., Joux, A., Carribault, P., Lemuet, C., & Jalby, W. (2005). Collisions of SHA-0 and Reduced SHA-1. Lecture Notes in Computer Science, 3494, 36–57.
Wang, X. Y., Yin, Y. Q., & Yu, H. B. (2005). Finding collisions in the full SHA-1. Lecture Notes in Computer Science, 3621, 17–36.
FIPS PUB 180-2. (2002). Secure Hash Standard, federal information processing standard (FIPS). Washington DC: National Institute of Standards and Technology.
Sanadhya, S. K., & Sarkar, P. (2008). New collision attacks against up to 24-step SHA-2. Lecture Notes in Computer Science, 5365, 91–103.
Lamberger, M., & Mendel, F. (2011). Higher-order differential attack on reduced SHA-256. IACR Cryptology ePrint Archive, 2011/37.
Khovratovich, D., Rechberger, C., & Savelieva, A. (2012). Bicliques for preimages: Attacks on Skein-512 and the SHA-2 family. Lecture Notes in Computer Science, 7549, 244–263.
Joux, A. (2004). Multicollisions in iterated hash functions: Application to cascaded constructions. Lecture Notes in Computer Science, 3152, 306–316.
Kelsey, J., & Schneier, B. (2005). Second preimages on n-bit hash functions for much less than 2n work. Lecture Notes in Computer Science, 3494, 474–490.
Kelsey, J., & Kohno, T. (2006). Herding hash functions and the Nostradamus attack. Lecture Notes in Computer Science, 4004, 183–200.
FIPS PUB 202. (2014). SHA-3 standard: Permutation-based hash and extendable-output functions. NIST Information Technology Laboratory.
Bertoni, G., Daemen, J., Peeters, M., & Assche, G. V. (2008). On the indifferentiability of the sponge construction. Lecture Notes in Computer Science, 4965, 181–197.
Dinur, I., Dunkelman, O., & Shamir, A. (2012). New attacks on Keccak-224 and Keccak-256. Lecture Notes in Computer Science, 7549, 442–461.
Dinur, I., Dunkelman, O., & Shamir, A. (2013). Collision attacks on up to 5 rounds of SHA-3 using generalized internal differentials. Lecture Notes in Computer Science, 8424, 219–240.
Kotulski, Z., & Szczepanski, J. (1997). Discrete chaotic cryptography. Annalen der Physik, 509(5), 381–394.
Amig, J. M., Kocarev, L., & Szczepanski, J. (2007). Theory and practice of chaotic cryptography. Physics Letters A, 366(3), 211–216.
Wong, K. W. (2003). A combined chaotic cryptographic and hashing scheme. Physics Letters A, 307(5), 292–298.
Xiao, D., Liao, X., & Deng, S. (2005). One-way Hash function construction based on the chaotic map with changeable-parameter. Chaos, Solitons & Fractals, 24(1), 65–71.
Lian, S., Sun, J., & Wang, Z. (2006). Secure hash function based on neural network. Neurocomputing, 69(16), 2346–2350.
Singla, P., Sachdeva, P., & Ahmad, M. (2014). Exploring chaotic neural network for cryptographic hash function. Emerging Trends in Computing and Communication LNEE, 298, 143–148.
Akhshani, A., Behnia, S., Akhavan, A., Jafarizadeh, M. A., Hassan, H. A., & Hassan, Z. (2009). Hash function based on hierarchy of 2D piecewise nonlinear chaotic maps. Chaos, Solitons & Fractals, 42(4), 2405–2412.
Akhavan, A., Samsudin, A., & Akhshani, A. (2013). A novel parallel hash function based on 3D chaotic map. EURASIP Journal on Advances in Signal Processing, 2013, 126.
Yang, H., Wong, K. W., Liao, X., Wang, Y., & Yang, D. (2009). One-way hash function construction based on chaotic map network. Chaos, Solitons & Fractals, 41(5), 2566–2574.
Wang, Y., Liao, X., Xiao, D., & Wong, K. W. (2008). One-way hash function construction based on 2D coupled map lattices. Information Sciences, 178(5), 1391–1406.
Xiao, D., Liao, X., & Deng, S. (2008). Parallel keyed hash function construction based on chaotic maps. Physics Letter A, 372(26), 4682–4688.
Ren, H., Wang, Y., Xie, Q., & Yang, H. (2009). A novel method for one-way hash function construction based on spatiotemporal chaos. Chaos Solitons & Fractals, 42(4), 2014–2022.
Kanso, A., & Ghebleh, M. (2015). A structure-based chaotic hashing scheme. Nonlinear Dynamics, 81(1), 27–40.
Teh, J. S., Samsudin, A., & Akhavan, A. (2015). Parallel chaotic hash function based on the shuffle-exchange network. Nonlinear Dynamics, 81(3), 1067–1079.
Luo, Y., & Du, M. (2012). One-way hash function construction based on the spatiotemporal chaotic system. Chinese Physics B, 21(6), 060503.
May, R. M. (1976). Simple mathematical models with very complicated dynamics. Nature, 261(5560), 459–467.
Crampin, M., & Heal, B. (1994). On the chaotic behaviour of the tent map. Teaching Mathematics and its Applications, 13(2), 83–89.
Li, S., Chen, G., & Mou, X. (2005). On the dynamical degradation of digital piecewise linear chaotic maps. International Journal of Bifurcation and Chaos, 15(10), 3119–3151.
Rogers, T. D., & Whitley, D. C. (1983). Chaos in the cubic mapping. Mathematical Modelling, 4(1), 9–25.
Chirikov, B. V. (1969). Research concerning the theory of nonlinear resonance and stochasticity. Preprint N 267, Institute of Nuclear Physics, Novosibirsk.
Fridrich, J. (1998). Symmetric ciphers based on two-dimensional chaotic maps. International Journal of Bifurcation and chaos, 8(6), 1259–1284.
Shannon, C. E. (1949). Communication theory of secrecy systems. Bell Systems Technical Journal, 28, 656–715.
Zhang, H., Wang, X., Li, Z., & Liu, D. (2005). One way hash function construction based on spatiotemporal chaos. Acta Physica Sinica, 54, 4006–4011.
Xiao, D., Liao, X., & Wang, Y. (2009). Improving the security of a parallel keyed hash function based on chaotic maps. Physics Letters A, 373(47), 4346–4353.
Guo, W., Wang, X., He, D., & Cao, Y. (2009). Cryptanalysis on a parallel keyed hash function based on chaotic maps. Physics Letters A, 373(36), 3201–3206.
Deng, S. J., Li, Y. T., & Xiao, D. (2009). Analysis and improvement of a chaos-based hash function construction. Communications in Nonlinear Science and Numerical Simulation, 15(5), 1338–1347.
Xiao, D., Shih, F. Y., & Liao, X. F. (2010). A chaos-based hash function with both modification detection and localization capabilities. Communications in Nonlinear Science and Numerical Simulation, 15(9), 2254–2261.
Li, Y., Xiao, D., Deng, S., Han, Q., & Zhou, G. (2011). Parallel hash function construction based on chaotic maps with changeable parameters. Neural Computation and Applications, 20(8), 1305–1312.
Li, Y., Deng, S., & Xiao, D. (2011). A novel Hash algorithm construction based on chaotic neural network. Neural Computation and Applications, 20(1), 133–141.
Li, Y., Xiao, D., & Deng, S. (2012). Keyed hash function based on a dynamic lookup table of functions. Information Sciences, 214, 56–75.
Kanso, A., & Ghebleh, M. (2013). A fast and efficient chaos-based keyed hash function. Communications in Nonlinear Science and Numerical Simulation, 18(1), 109–123.
Wang, Y., Wong, K. W., & Xiao, D. (2011). Parallel hash function construction based on coupled map lattices. Communications in Nonlinear Science and Numerical Simulation, 16(7), 2810–2821.
Li, Y., Li, X., & Liu, X. (2016). A fast and efficient hash function based on generalised chaotic mapping with variable parameters. Nonlinear Dynamics. doi:10.1007/s00521-015-2158-7).
Akhavan, A., Samsudin, A., & Akhshani, A. (2009). Hash function based on piecewise nonlinear chaotic map. Chaos Solitons & Fractals, 42(2), 1046–1053.
Xiao, D., Liao, X. F., & Wang, Y. (2009). Parallel keyed hash function construction based on chaotic neural network. Neurocomputing, 72(10–12), 2288–2296.
Kanso, A., Yahyaoui, H., & Almulla, M. (2012). Keyed hash function based on a chaotic map. Information Sciences, 186(1), 249–264.
Li, Y., Xiao, D., Deng, S., & Zhou, G. (2013). Improvement and performance analysis of a novel hash function based on chaotic neural network. Neural Computation and Applications, 22(2), 391–402.
Li, Y., Ge, G., & Xia, D. (2016). Chaotic hash function based on the dynamic S-Box with variable parameters. Nonlinear Dynamics, 84(4), 2387–2402.
Chenaghlu, M. A., Jamali, S., & Khasmakhi, N. N. (2016). A novel keyed parallel hashing scheme based on a new chaotic system. Chaos, Solitons & Fractals, 87, 216–225.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ahmad, M., Khurana, S., Singh, S. et al. A Simple Secure Hash Function Scheme Using Multiple Chaotic Maps. 3D Res 8, 13 (2017). https://doi.org/10.1007/s13319-017-0123-1
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s13319-017-0123-1