Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A Simple Secure Hash Function Scheme Using Multiple Chaotic Maps

  • 3DR Express
  • Published:
3D Research

Abstract

The chaotic maps posses high parameter sensitivity, random-like behavior and one-way computations, which favor the construction of cryptographic hash functions. In this paper, we propose to present a novel hash function scheme which uses multiple chaotic maps to generate efficient variable-sized hash functions. The message is divided into four parts, each part is processed by a different 1D chaotic map unit yielding intermediate hash code. The four codes are concatenated to two blocks, then each block is processed through 2D chaotic map unit separately. The final hash value is generated by combining the two partial hash codes. The simulation analyses such as distribution of hashes, statistical properties of confusion and diffusion, message and key sensitivity, collision resistance and flexibility are performed. The results reveal that the proposed anticipated hash scheme is simple, efficient and holds comparable capabilities when compared with some recent chaos-based hash algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Konheim, A. G. (2010). Hashing in computer science: Fifty years of slicing and dicing. New York: Wiley.

    Book  Google Scholar 

  2. Preneel, B. (1993). Analysis and design of cryptographic hash functions. Ph.D. Thesis, Katholieke Universiteit Leuven.

  3. AlAhmad, M. A., & Alshaikhli, I. F. (2013). Broad view of cryptographic hash functions. International Journal of Computer Science Issues, 10(4), 239–246.

    Google Scholar 

  4. Xiao, D., Liao, X., & Deng, S. (2011). Chaos based hash function, chaos-based cryptography. Berlin: Springer.

    MATH  Google Scholar 

  5. Katz, J., & Lindell, Y. (2014). Introduction to modern cryptography. Boca Raton: CRC Press.

    MATH  Google Scholar 

  6. Rivest, R. L. (1991). The MD4 message digest algorithm. Lecture Notes in Computer Science, 537, 303–311.

    Article  MATH  Google Scholar 

  7. Rivest, R. (1992). The MD5 message-digest algorithm. RFC: IETF Network Working Group.

    Book  Google Scholar 

  8. FIPS 180. (1993). Secure Hash Standard, federal information processing standard (FIPS). Washington DC: National Institute of Standards and Technology.

  9. FIPS 180-1. (1995). Secure Hash Standard, federal information processing standard (FIPS). Washington DC: National Institute of Standards and Technology.

  10. Menezes, A. J., Oorschot, P. C. V., & Vanstone, S. A. (1997). Handbook of applied cryptography. Boca Raton: CRC Press.

    MATH  Google Scholar 

  11. Preneel, B., Govaerts, R., & Vandewalle, J. (1994). Hash functions based on block ciphers A synthetic approach. Lecture Notes in Computer Science, 773, 368–378.

    Article  MATH  Google Scholar 

  12. Wang, X., Feng, D., Lai, X., & Yu, H. (2004). Collisions for hash functions MD4, MD5, HAVAL-128 and RIPEMD. Cryptology ePrint Archive, report 2004/199.

  13. Wang, X. Y., Lai, X. J., Feng, D. G., Chen, H., & Yu, X. Y. (2005). Cryptanalysis of the Hash function MD4 and RIPEMD. Lecture Notes in Computer Science, 3494, 1–18.

    Article  MathSciNet  MATH  Google Scholar 

  14. Wang, X. Y., & Yu, H. B. (2005). How to break MD5 and other Hash functions. Lecture Notes in Computer Science, 3494, 19–35.

    Article  MathSciNet  MATH  Google Scholar 

  15. Liang, J., & Lai, X. J. (2007). Improved collision attack on hash function MD5. Journal of Computer Science and Technology, 22(1), 79–87.

    Article  MathSciNet  Google Scholar 

  16. Biham, E., Chen, R., Joux, A., Carribault, P., Lemuet, C., & Jalby, W. (2005). Collisions of SHA-0 and Reduced SHA-1. Lecture Notes in Computer Science, 3494, 36–57.

    Article  MathSciNet  MATH  Google Scholar 

  17. Wang, X. Y., Yin, Y. Q., & Yu, H. B. (2005). Finding collisions in the full SHA-1. Lecture Notes in Computer Science, 3621, 17–36.

    Article  MathSciNet  MATH  Google Scholar 

  18. FIPS PUB 180-2. (2002). Secure Hash Standard, federal information processing standard (FIPS). Washington DC: National Institute of Standards and Technology.

  19. Sanadhya, S. K., & Sarkar, P. (2008). New collision attacks against up to 24-step SHA-2. Lecture Notes in Computer Science, 5365, 91–103.

    Article  MathSciNet  MATH  Google Scholar 

  20. Lamberger, M., & Mendel, F. (2011). Higher-order differential attack on reduced SHA-256. IACR Cryptology ePrint Archive, 2011/37.

  21. Khovratovich, D., Rechberger, C., & Savelieva, A. (2012). Bicliques for preimages: Attacks on Skein-512 and the SHA-2 family. Lecture Notes in Computer Science, 7549, 244–263.

    Article  MATH  Google Scholar 

  22. Joux, A. (2004). Multicollisions in iterated hash functions: Application to cascaded constructions. Lecture Notes in Computer Science, 3152, 306–316.

    Article  MathSciNet  MATH  Google Scholar 

  23. Kelsey, J., & Schneier, B. (2005). Second preimages on n-bit hash functions for much less than 2n work. Lecture Notes in Computer Science, 3494, 474–490.

    Article  MATH  Google Scholar 

  24. Kelsey, J., & Kohno, T. (2006). Herding hash functions and the Nostradamus attack. Lecture Notes in Computer Science, 4004, 183–200.

    Article  MathSciNet  MATH  Google Scholar 

  25. FIPS PUB 202. (2014). SHA-3 standard: Permutation-based hash and extendable-output functions. NIST Information Technology Laboratory.

  26. Bertoni, G., Daemen, J., Peeters, M., & Assche, G. V. (2008). On the indifferentiability of the sponge construction. Lecture Notes in Computer Science, 4965, 181–197.

    Article  MathSciNet  MATH  Google Scholar 

  27. Dinur, I., Dunkelman, O., & Shamir, A. (2012). New attacks on Keccak-224 and Keccak-256. Lecture Notes in Computer Science, 7549, 442–461.

    Article  MATH  Google Scholar 

  28. Dinur, I., Dunkelman, O., & Shamir, A. (2013). Collision attacks on up to 5 rounds of SHA-3 using generalized internal differentials. Lecture Notes in Computer Science, 8424, 219–240.

    Article  MATH  Google Scholar 

  29. Kotulski, Z., & Szczepanski, J. (1997). Discrete chaotic cryptography. Annalen der Physik, 509(5), 381–394.

    Article  MATH  Google Scholar 

  30. Amig, J. M., Kocarev, L., & Szczepanski, J. (2007). Theory and practice of chaotic cryptography. Physics Letters A, 366(3), 211–216.

    Article  MATH  Google Scholar 

  31. Wong, K. W. (2003). A combined chaotic cryptographic and hashing scheme. Physics Letters A, 307(5), 292–298.

    Article  MathSciNet  MATH  Google Scholar 

  32. Xiao, D., Liao, X., & Deng, S. (2005). One-way Hash function construction based on the chaotic map with changeable-parameter. Chaos, Solitons & Fractals, 24(1), 65–71.

    Article  MathSciNet  MATH  Google Scholar 

  33. Lian, S., Sun, J., & Wang, Z. (2006). Secure hash function based on neural network. Neurocomputing, 69(16), 2346–2350.

    Article  Google Scholar 

  34. Singla, P., Sachdeva, P., & Ahmad, M. (2014). Exploring chaotic neural network for cryptographic hash function. Emerging Trends in Computing and Communication LNEE, 298, 143–148.

    Article  Google Scholar 

  35. Akhshani, A., Behnia, S., Akhavan, A., Jafarizadeh, M. A., Hassan, H. A., & Hassan, Z. (2009). Hash function based on hierarchy of 2D piecewise nonlinear chaotic maps. Chaos, Solitons & Fractals, 42(4), 2405–2412.

    Article  Google Scholar 

  36. Akhavan, A., Samsudin, A., & Akhshani, A. (2013). A novel parallel hash function based on 3D chaotic map. EURASIP Journal on Advances in Signal Processing, 2013, 126.

    Article  MATH  Google Scholar 

  37. Yang, H., Wong, K. W., Liao, X., Wang, Y., & Yang, D. (2009). One-way hash function construction based on chaotic map network. Chaos, Solitons & Fractals, 41(5), 2566–2574.

    Article  Google Scholar 

  38. Wang, Y., Liao, X., Xiao, D., & Wong, K. W. (2008). One-way hash function construction based on 2D coupled map lattices. Information Sciences, 178(5), 1391–1406.

    Article  MATH  Google Scholar 

  39. Xiao, D., Liao, X., & Deng, S. (2008). Parallel keyed hash function construction based on chaotic maps. Physics Letter A, 372(26), 4682–4688.

    Article  MathSciNet  MATH  Google Scholar 

  40. Ren, H., Wang, Y., Xie, Q., & Yang, H. (2009). A novel method for one-way hash function construction based on spatiotemporal chaos. Chaos Solitons & Fractals, 42(4), 2014–2022.

    Article  Google Scholar 

  41. Kanso, A., & Ghebleh, M. (2015). A structure-based chaotic hashing scheme. Nonlinear Dynamics, 81(1), 27–40.

    Article  MathSciNet  Google Scholar 

  42. Teh, J. S., Samsudin, A., & Akhavan, A. (2015). Parallel chaotic hash function based on the shuffle-exchange network. Nonlinear Dynamics, 81(3), 1067–1079.

    Article  Google Scholar 

  43. Luo, Y., & Du, M. (2012). One-way hash function construction based on the spatiotemporal chaotic system. Chinese Physics B, 21(6), 060503.

    Article  Google Scholar 

  44. May, R. M. (1976). Simple mathematical models with very complicated dynamics. Nature, 261(5560), 459–467.

    Article  Google Scholar 

  45. Crampin, M., & Heal, B. (1994). On the chaotic behaviour of the tent map. Teaching Mathematics and its Applications, 13(2), 83–89.

    Article  Google Scholar 

  46. Li, S., Chen, G., & Mou, X. (2005). On the dynamical degradation of digital piecewise linear chaotic maps. International Journal of Bifurcation and Chaos, 15(10), 3119–3151.

    Article  MathSciNet  MATH  Google Scholar 

  47. Rogers, T. D., & Whitley, D. C. (1983). Chaos in the cubic mapping. Mathematical Modelling, 4(1), 9–25.

    Article  MathSciNet  MATH  Google Scholar 

  48. Chirikov, B. V. (1969). Research concerning the theory of nonlinear resonance and stochasticity. Preprint N 267, Institute of Nuclear Physics, Novosibirsk.

  49. Fridrich, J. (1998). Symmetric ciphers based on two-dimensional chaotic maps. International Journal of Bifurcation and chaos, 8(6), 1259–1284.

    Article  MathSciNet  MATH  Google Scholar 

  50. Shannon, C. E. (1949). Communication theory of secrecy systems. Bell Systems Technical Journal, 28, 656–715.

    Article  MathSciNet  MATH  Google Scholar 

  51. Zhang, H., Wang, X., Li, Z., & Liu, D. (2005). One way hash function construction based on spatiotemporal chaos. Acta Physica Sinica, 54, 4006–4011.

    Google Scholar 

  52. Xiao, D., Liao, X., & Wang, Y. (2009). Improving the security of a parallel keyed hash function based on chaotic maps. Physics Letters A, 373(47), 4346–4353.

    Article  MathSciNet  MATH  Google Scholar 

  53. Guo, W., Wang, X., He, D., & Cao, Y. (2009). Cryptanalysis on a parallel keyed hash function based on chaotic maps. Physics Letters A, 373(36), 3201–3206.

    Article  MathSciNet  MATH  Google Scholar 

  54. Deng, S. J., Li, Y. T., & Xiao, D. (2009). Analysis and improvement of a chaos-based hash function construction. Communications in Nonlinear Science and Numerical Simulation, 15(5), 1338–1347.

    Article  MathSciNet  MATH  Google Scholar 

  55. Xiao, D., Shih, F. Y., & Liao, X. F. (2010). A chaos-based hash function with both modification detection and localization capabilities. Communications in Nonlinear Science and Numerical Simulation, 15(9), 2254–2261.

    Article  MathSciNet  MATH  Google Scholar 

  56. Li, Y., Xiao, D., Deng, S., Han, Q., & Zhou, G. (2011). Parallel hash function construction based on chaotic maps with changeable parameters. Neural Computation and Applications, 20(8), 1305–1312.

    Article  Google Scholar 

  57. Li, Y., Deng, S., & Xiao, D. (2011). A novel Hash algorithm construction based on chaotic neural network. Neural Computation and Applications, 20(1), 133–141.

    Article  Google Scholar 

  58. Li, Y., Xiao, D., & Deng, S. (2012). Keyed hash function based on a dynamic lookup table of functions. Information Sciences, 214, 56–75.

    Article  Google Scholar 

  59. Kanso, A., & Ghebleh, M. (2013). A fast and efficient chaos-based keyed hash function. Communications in Nonlinear Science and Numerical Simulation, 18(1), 109–123.

    Article  MathSciNet  MATH  Google Scholar 

  60. Wang, Y., Wong, K. W., & Xiao, D. (2011). Parallel hash function construction based on coupled map lattices. Communications in Nonlinear Science and Numerical Simulation, 16(7), 2810–2821.

    Article  MathSciNet  MATH  Google Scholar 

  61. Li, Y., Li, X., & Liu, X. (2016). A fast and efficient hash function based on generalised chaotic mapping with variable parameters. Nonlinear Dynamics. doi:10.1007/s00521-015-2158-7).

    Google Scholar 

  62. Akhavan, A., Samsudin, A., & Akhshani, A. (2009). Hash function based on piecewise nonlinear chaotic map. Chaos Solitons & Fractals, 42(2), 1046–1053.

    Article  MATH  Google Scholar 

  63. Xiao, D., Liao, X. F., & Wang, Y. (2009). Parallel keyed hash function construction based on chaotic neural network. Neurocomputing, 72(10–12), 2288–2296.

    Article  Google Scholar 

  64. Kanso, A., Yahyaoui, H., & Almulla, M. (2012). Keyed hash function based on a chaotic map. Information Sciences, 186(1), 249–264.

    Article  MathSciNet  MATH  Google Scholar 

  65. Li, Y., Xiao, D., Deng, S., & Zhou, G. (2013). Improvement and performance analysis of a novel hash function based on chaotic neural network. Neural Computation and Applications, 22(2), 391–402.

    Article  Google Scholar 

  66. Li, Y., Ge, G., & Xia, D. (2016). Chaotic hash function based on the dynamic S-Box with variable parameters. Nonlinear Dynamics, 84(4), 2387–2402.

    Article  MATH  Google Scholar 

  67. Chenaghlu, M. A., Jamali, S., & Khasmakhi, N. N. (2016). A novel keyed parallel hashing scheme based on a new chaotic system. Chaos, Solitons & Fractals, 87, 216–225.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Musheer Ahmad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, M., Khurana, S., Singh, S. et al. A Simple Secure Hash Function Scheme Using Multiple Chaotic Maps. 3D Res 8, 13 (2017). https://doi.org/10.1007/s13319-017-0123-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13319-017-0123-1

Keywords

Navigation