Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Faster modular arithmetic for isogeny-based crypto on embedded devices

  • Regular Paper
  • Published:
Journal of Cryptographic Engineering Aims and scope Submit manuscript

Abstract

We show how to implement the Montgomery reduction algorithm for isogeny-based cryptography such that it can utilize the unsigned multiply accumulate accumulate long instruction present on modern ARM architectures. This results in a practical speedup of a factor 1.34 compared to the approach used by SIKE: the supersingular isogeny-based submission to the ongoing post-quantum standardization effort. Moreover, motivated by the recent work of Costello and Hisil (A simple and compact algorithm for SIDH with arbitrary degree isogenies. In: ASIACRYPT 2017, Part II, LNCS. Springer, Heidelberg 2017), which shows that there is only a moderate degradation in performance when evaluating large odd-degree isogenies, we search for more general supersingular isogeny friendly moduli. Using graphics processing units to accelerate this search, we find many such moduli which allow for faster implementations on embedded devices. By combining these two approaches, we manage to make the modular reduction 1.5 times as fast on a 32-bit ARM platform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. In previous work, this approach is often credited to an unpublished 1995 work by Scott [33]. However, this work does not seem to be available online anymore. As far as we are aware, this is also (independently) presented in the 1993 work by Kaliski Jr. [20].

References

  1. Azarderakhsh, R., Campagna, M., Costello, C., Feo, L.D., Hess, B., Jalali, A., Jao, D., Koziel, B., LaMacchia, B., Longa, P., Naehrig, M., Renes, J., Soukharev, V., Urbanik, D.: Supersingular isogeny key encapsulation. Submission to the NIST Post-Quantum Standardization project (2017)

  2. Azarderakhsh, R., Fishbein, D., Jao, D.: Efficient implementations of a quantum-resistant key-exchange protocol on embedded systems. Technical report (2014). http://cacr.uwaterloo.ca/techreports/2014/cacr2014-20.pdf

  3. Barrett, P.: Implementing the Rivest Shamir and Adleman public key encryption algorithm on a standard digital signal processor. In: Odlyzko, A.M. (ed.) CRYPTO’86, LNCS, vol. 263, pp. 311–323. Springer, Heidelberg (1987)

  4. Bernstein, D.J., Chen, T.R., Cheng, C.M., Lange, T., Yang, B.Y.: ECM on graphics cards. In: Joux, A. (ed.) EUROCRYPT 2009, LNCS, vol. 5479, pp. 483–501. Springer, Heidelberg (2009)

  5. Bos, J.W., Friedberger, S.: Fast arithmetic modulo \(2^xp^y\pm 1\). In: Burgess, N., Bruguera, J.D., de Dinechin, F. (eds.) IEEE Symposium on Computer Arithmetic—ARITH 2017, pp. 148–155. IEEE Computer Society (2017). https://doi.org/10.1109/ARITH.2017.15

  6. Chen, L., Jordan, S., Liu, Y., Moody, D., Peralta, R., Perlner, R., Smith-Tone, D.: Report on post-quantum cryptography. NISTIR 8105, National Institute of Standards and Technology (2016). http://csrc.nist.gov/publications/drafts/nistir-8105/nistir_8105_draft.pdf

  7. Costello, C., Hisil, H.: A simple and compact algorithm for SIDH with arbitrary degree isogenies. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part II, LNCS, vol. 10625, pp. 303–329. Springer, Heidelberg (2017)

  8. Costello, C., Longa, P., Naehrig, M.: Efficient algorithms for supersingular isogeny Diffie–Hellman. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part I, LNCS, vol. 9814, pp. 572–601. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-4_21

  9. De Bruijn, N.G.: On the number of positive integers \(\le x\) and free of prime factors \(> y\). In: Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen Series A, vol. 54, pp. 50–60 (1951)

  10. Devoret, M.H., Schoelkopf, R.J.: Superconducting circuits for quantum information: an outlook. Science 339(6124), 1169–1174 (2013)

    Article  Google Scholar 

  11. Dickman, K.: On the frequency of numbers containing prime factors of a certain relative magnitude. Arkiv for matematik, astronomi och fysik 22(10), 1–14 (1930)

    MATH  Google Scholar 

  12. Dussé, S.R., Kaliski Jr., B.S.: A cryptographic library for the Motorola DSP56000. In: Damgård, I. (ed.) EUROCRYPT’90, LNCS, vol. 473, pp. 230–244. Springer, Heidelberg (1991)

  13. Faz-Hernández, A., López, J., Ochoa-Jiménez, E., Rodríguez-Henríquez, F.: A faster software implementation of the supersingular isogeny Diffie-Hellman key exchange protocol. IEEE Trans. Comput. 67(11), 1622–1636 (2017)

    Article  MathSciNet  Google Scholar 

  14. Gouvêa, C.P.L., López, J.: Software implementation of pairing-based cryptography on sensor networks using the MSP430 microcontroller. In: Roy, B.K., Sendrier, N. (eds.) INDOCRYPT 2009, LNCS, vol. 5922, pp. 248–262. Springer, Heidelberg (2009)

  15. Großschädl, J., Oswald, E., Page, D., Tunstall, M.: Side-channel analysis of cryptographic software via early-terminating multiplications. In: Lee, D., Hong, S. (eds.) ICISC 09, LNCS, vol. 5984, pp. 176–192. Springer, Heidelberg (2010)

  16. Hermans, J., Schneider, M., Buchmann, J., Vercauteren, F., Preneel, B.: Parallel shortest lattice vector enumeration on graphics cards. In: Bernstein, D.J., Lange, T. (eds.) AFRICACRYPT 10, LNCS, vol. 6055, pp. 52–68. Springer, Heidelberg (2010)

  17. Jalali, A., Azarderakhsh, R., Kermani, M.M., Jao, D.: Supersingular isogeny Diffie–Hellman key exchange on 64-bit arm. IEEE Trans. Dependable Secure Comput. (2017). https://doi.org/10.1109/TDSC.2017.2723891

  18. Jao, D., Feo, L.D.: Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies. In: Yang, B. (ed.) Post-Quantum Cryptography, LNCS, vol. 7071, pp. 19–34. Springer (2011). https://doi.org/10.1007/978-3-642-25405-5_2

  19. Joux, A., Vitse, V.: A crossbred algorithm for solving Boolean polynomial systems. In: Kaczorowski, J., Pieprzyk, J., Pomykala, J. (eds.) Number-Theoretic Methods in Cryptology 2017, LNCS, vol. 10737, pp. 3–21. Springer (2018)

  20. Kaliski Jr., B.: The Z80180 and big-number arithmetic. Dr. Dobb’s J. 18(9), 50–58 (1993)

    Google Scholar 

  21. Karatsuba, A.A., Ofman, Y.: Multiplication of many-digital numbers by automatic computers. In: Doklady Akad. Nauk SSSR, no. 145 in Proceedings of the USSR Academy of Science, pp. 293–294 (1962)

  22. Karmakar, A., Roy, S.S., Vercauteren, F., Verbauwhede, I.: Efficient finite field multiplication for isogeny based post quantum cryptography. In: Duquesne, S., Petkova-Nikova, S. (eds.) Arithmetic of Finite Fields—WAIFI, LNCS, vol. 10064, pp. 193–207 (2016)

  23. Kelly, J., Barends, R., Fowler, A.G., Megrant, A., Jeffrey, E., White, T.C., Sank, D., Mutus, J.Y., Campbell, B., Chen, Y., Chen, Z., Chiaro, B., Dunsworth, A., Hoi, I.C., Neill, C., O’Malley, P.J.J., Quintana, C., Roushan, P., Vainsencher, A., Wenner, J., Cleland, A.N., Martinis, J.M.: State preservation by repetitive error detection in a superconducting quantum circuit. Nature 519, 66–69 (2015)

    Article  Google Scholar 

  24. Koziel, B., Jalali, A., Azarderakhsh, R., Jao, D., Mozaffari-Kermani, M.: NEON-SIDH: efficient implementation of supersingular isogeny Diffie–Hellman key exchange protocol on ARM. In: Foresti, S., Persiano, G. (eds.) Cryptology and Network Security, pp. 88–103. Springer, Berlin (2016)

    Chapter  Google Scholar 

  25. Kuo, P.C., Schneider, M., Dagdelen, Ö., Reichelt, J., Buchmann, J., Cheng, C.M., Yang, B.Y.: Extreme enumeration on GPU and in clouds—how many dollars you need to break SVP challenges. In: Preneel, B., Takagi, T. (eds.) CHES 2011, LNCS, vol. 6917, pp. 176–191. Springer, Heidelberg (2011)

  26. Lindholm, E., Nickolls, J., Oberman, S., Montrym, J.: NVIDIA tesla: a unified graphics and computing architecture. IEEE Micro 28(2), 39–55 (2008)

    Article  Google Scholar 

  27. Montgomery, P.L.: Modular multiplication without trial division. Math. Comput. 44(170), 519–521 (1985)

    Article  MathSciNet  Google Scholar 

  28. Moody, D.: Post-quantum cryptography: NIST’s plans for the future. Presentation at PKC 2016 (2016). http://csrc.nist.gov/groups/ST/post-quantum-crypto/documents/pqcrypto-2016-presentation.pdf

  29. Mosca, M.: Cybersecurity in an era with quantum computers: will we be ready? Cryptology ePrint Archive, Report 2015/1075 (2015). http://eprint.iacr.org/2015/1075

  30. Moss, A., Page, D., Smart, N.P.: Toward acceleration of RSA using 3D graphics hardware. In: Galbraith, S.D. (ed.) Proceedings of the 11th IMA International Conference on Cryptography and Coding, Cryptography and Coding 2007, pp. 364–383. Springer (2007)

  31. NVIDIA Corporation: NVIDIA CUDA C Programming Guide v9.1 (2018). http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf

  32. Ramaswami, V.: On the number of positive integers less than \(x\) and free of prime divisors greater than \(x^c\). Bull. AMS 55(12), 1122–1127 (1949)

    Article  Google Scholar 

  33. Scott, M.: Fast machine code for modular multiplication (1995). ftp://ftp.computing.dcu.ie/pub/crypto/fast mod mult2.ps

  34. Seo, H., Liu, Z., Longa, P., Hu, Z.: SIDH on ARM: faster modular multiplications for faster post-quantum supersingular isogeny key exchange. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018(3), 1–20 (2018). https://doi.org/10.13154/tches.v2018.i3.1-20

    Article  Google Scholar 

  35. Shand, M., Vuillemin, J.: Fast implementations of RSA cryptography. In: Swartzlander Jr., E.E., Irwin, M.J., Jullien, G.A. (eds.) 11th Symposium on Computer Arithmetic, pp. 252–259. IEEE Computer Society (1993). https://doi.org/10.1109/ARITH.1993.378085

  36. Szerwinski, R., Güneysu, T.: Exploiting the power of GPUs for asymmetric cryptography. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008, LNCS, vol. 5154, pp. 79–99. Springer, Heidelberg (2008)

  37. Walter, C.D.: Montgomery exponentiation needs no final subtractions. Electron. Lett. 35, 1831–1832 (1999)

    Article  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the European Union’s Horizon 2020 research and innovation program Marie Skłodowska-Curie ITN ECRYPT-NET (Project Reference 643161) and Horizon 2020 project PQCRYPTO (Project Reference 645622). We would like to thank the reviewers for their useful suggestions to improve the quality of this work.

figure e

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joppe W. Bos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bos, J.W., Friedberger, S.J. Faster modular arithmetic for isogeny-based crypto on embedded devices. J Cryptogr Eng 10, 97–109 (2020). https://doi.org/10.1007/s13389-019-00214-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13389-019-00214-6

Keywords

Navigation