Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

\(\mu \)-Pseudo almost periodic solutions to some semilinear boundary equations on networks

  • Published:
Afrika Matematika Aims and scope Submit manuscript

Abstract

This work deals with the existence and uniqueness of \(\mu \)-pseudo almost periodic solutions to some transport processes along the edges of a finite network with inhomogeneous conditions in the vertices. For that, the strategy consists of seeing these systems as a particular case of the semilinear boundary evolution equations

$$\begin{aligned} (SHBE)\;{\left\{ \begin{array}{ll} \displaystyle {\frac{du}{dt}} &{}= A_{m} u(t)+f(t,u(t)),\quad t\in {\mathbb {R}}, \\ L u(t)&{} = g(t,u(t)) ,\quad t \in {\mathbb {R}},\\ \end{array}\right. } \end{aligned}$$

where \(A:= A_m|ker L\) generates a C\(_0\)-semigroup admitting an exponential dichotomy on a Banach space. Assuming that the forcing terms taking values in a state space and in a boundary space respectively are only \(\mu \)-pseudo almost periodic in the sense of Stepanov, we show that (SHBE) has a unique \(\mu \)-pseudo almost periodic solution which satisfies a variation of constant formula. Then we apply the previous result to obtain the existence and uniqueness of \(\mu \)-pseudo almost periodic solution to our model of network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ait, D.E., Lhachimi, L.: Properties and composition of pseudo almost periodic functions and application to semilinear differential equations in Banach spaces. Int. J. Evol. Equ. 4(1), 77–89 (2009)

    MathSciNet  Google Scholar 

  2. Baroun, M., Ezzinbi, K., Khalil, K., Maniar, L.: Pseudo almost periodic solutions for some parabolic evolution equations with Stepanov-like pseudo almost periodic forcing terms. J. Math. Anal. Appl. 462(1), 233–262 (2018)

    Article  MathSciNet  Google Scholar 

  3. Baroun, M., Maniar, L., N’Guérékata, G.M.: Almost periodic and almost automorphic solutions to semilinear parabolic boundary equations. Nonlinear Anal. 69, 2114–2124 (2008)

    Article  MathSciNet  Google Scholar 

  4. Baroun, M., Maniar, L., Schnaubelt, R.: Almost periodicity of parabolic evolution equations with inhomogenous boundary values. Integr. Eqn. Oper. Theory 65, 169–193 (2009)

    Article  Google Scholar 

  5. Bayazit, F., Dorn, B., Fijavz, M.K.: Asymptotic periodicity of flows in time-depending networks. J. Netw. Heterog. Media 8, 843–855 (2013)

    Article  MathSciNet  Google Scholar 

  6. Bayazit, F., Dorn, B., Rhandi, A.: Flows in networks with delay in the vertices. Math. Nachr. 285, 1603–1615 (2012)

    Article  MathSciNet  Google Scholar 

  7. Blot, J., Cieutat, P., Ezzinbi, K.: New approach for weighted pseudo-almost periodic functions under the light of measure theory, basic results and applications. Appl. Anal. 92(3), 1–34 (2011)

    MathSciNet  Google Scholar 

  8. Boulite, S., Bouslous, H., El Azzouzi, M., Maniar, L.: Approximate positive controllability of positive boundary control systems. Positivity 18(2), 375–393 (2014)

    Article  MathSciNet  Google Scholar 

  9. Boulite, S., Maniar, L., Moussi, M.: Wellposedness and asymptotic behaviour of non-autonomous boundary Cauchy problems. Forum Math. 18(4), 611–638 (2006)

    Article  MathSciNet  Google Scholar 

  10. Corduneanu, C.: Almost Periodic Functions. Wiley, New York (1989). (Reprinted, Chelsea, New York, 1989)

    Google Scholar 

  11. Diagana, T.: Stepanov-like pseudo almost periodic functions and their applications to differential equations. Commun. Math. Anal. v 3(1), 9–18 (2007)

    MathSciNet  Google Scholar 

  12. Diagana, T.: Weighted pseudo-almost periodic solutions to some differential equations. Nonlinear Anal. Theory Methods Appl. 68(8), 2250–2260 (2008)

    Article  MathSciNet  Google Scholar 

  13. Diagana, T., Mophou, G.M., N’Guerekata, G.M.: Existence of weighted pseudo almost periodic solutions to some classes of differential equations with \(S^p\)-weighted pseudo almost periodic coefficients. Nonlinear Anal. v 72(1), 430–438 (2010)

    Article  Google Scholar 

  14. Ding, H.S., Long, W., N’Guerekata, G.M.: Almost periodic solutions to abstract semilinear evolution equations with Stepanov almost periodic coefficients. J. Comput. Anal. Appl. 13(2), 231–242 (2011)

    MathSciNet  Google Scholar 

  15. Dorn, B.: Semigroups for flows in infinite networks. Semigroup Forum 76, 341–356 (2008)

    Article  MathSciNet  Google Scholar 

  16. Dorn, B., Keicher, V., Sikolya, E.: Asymptotic periodicity of recurrent flows in infinite networks. Math. Z. 263, 69–87 (2009)

    Article  MathSciNet  Google Scholar 

  17. Dorn, B., Kramar, M., Nagel, R., Radl, A.: The semigroup approach to transport processes in networks. Phys. D 239, 1416–1421 (2010)

    Article  MathSciNet  Google Scholar 

  18. Es-sebbar, B., Ezzinbi, K.: Stepanov ergodic perturbations for some neutral partial functional differential equations. Math. Methods Appl. Sci. 39(8), 1945–1963 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  19. Engel, K., Fijavz, M.K., Nagel, R., Sikolya, E.: Vertex control of flows in networks. J. Netw. Heterog. Media 3, 709–722 (2008)

    Article  MathSciNet  Google Scholar 

  20. Fink, A.: Almost Periodic Differential Equations. Lecture Notes in Mathematics, vol. 377. Springer-Verlag, Berlin (1974)

    Book  Google Scholar 

  21. Greiner, G.: Perturbing the boundary conditions of a generator. Houst. J. Math. 13(2), 213–229 (1987)

    MathSciNet  Google Scholar 

  22. Kramar, M., Sikolya, E.: Spectral properties and asymptotic periodicity of flows in networks. Math. Z. 249, 139–162 (2005)

    Article  MathSciNet  Google Scholar 

  23. Levitan, B.M.: Almost Periodic Functions. Gos. Izdat. Tekhn-Theor. Lit, Moscow (1953). ((in Russian))

    Google Scholar 

  24. Levitan, B.M., Zhikov, V.V.: Almost Periodic Functions and Differential Equations. Cambridge University Press (1982)

    Google Scholar 

  25. Li, H.X., Zhang, L.L.: Stepanov-like pseudo-almost periodicity and semilinear differential equations with Uniform Continuity. Results Math. 59, 43–61 (2011)

    Article  MathSciNet  CAS  Google Scholar 

  26. Long, W., Ding, H.S.: Composition theorems of Stepanov almost periodic functions and Stepanov-like pseudo almost periodic functions. Adv. Diff. Equ. 2011, 654–695 (2011)

    Article  MathSciNet  Google Scholar 

  27. Mátrai, T., Sikolya, E.: Asymptotic behavior of flows in networks. Forum Math. 19, 429–461 (2007)

    Article  MathSciNet  Google Scholar 

  28. Engel, K.-J., Nagel, R.: One-parameter semigroups for linear evolution equations. In: Brendle, S., Campiti, M., Hahn, T., Metafune, G., Nickel, G., Pallara, D., Perazzoli, C., Rhandi, A., Romanelli, S., Schnaubelt, R. (eds.) Graduate Texts in Mathematics, vol. 194. Springer-Verlag, New York, xxii+586 pp (2000)

  29. Thieme, H.R.: Semiflows generated by Lipschitz perturbations of non-densely defined linear operators. Diff. Int. Equ. 3(6), 1035–1066 (1990)

    Google Scholar 

  30. Zhinan, X.: Weighted pseudo almost periodic solutions for semilinear boundary differential equations. Electron. J. Math. Anal. Appl. 2(1), 237–245 (2014)

    MathSciNet  Google Scholar 

  31. Zhang, C.Y.: Pseudo-almost-periodic solutions of some differential equations. J. Math. Anal. Appl. 181(1), 62–76 (1994)

    Article  MathSciNet  Google Scholar 

  32. Zhao, Z.H., Chang, Y.K., N’Guerekata, G.M.: A new composition theorem for \(S^p\)-weighted pseudo almost periodic functions and applications to semilinear differential equations. Opuscula Math. 31(3), 457–473 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Baroun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akrid, T., Baroun, M. \(\mu \)-Pseudo almost periodic solutions to some semilinear boundary equations on networks. Afr. Mat. 35, 10 (2024). https://doi.org/10.1007/s13370-023-01148-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13370-023-01148-3

Keywords

Mathematics Subject Classification

Navigation