Abstract
The inhibition of acetylcholinesterase (AChE) enzyme has been used as a successful therapeutic strategy for the symptomatic treatment of Alzheimer’s disease and its progression. It is also known that Coumarins, a group of naturally occurring substances in many plants, exhibit a wide range of biological activities such as AChE inhibition. In this study, we present a quantitative structure–activity relationship (QSAR) analysis to predict the inhibitory activity (\({\mathrm{IC}}_{50}\)) of Coumarins derivatives using several statistical regression and machine learning models based on various molecular descriptors of 94 different compounds extracted by the popular Dragon software. The models include multiple linear regression (MLR), partial least squares (PLS), random forests, artificial neural networks, and support vector machine (SVM). Also, a genetic algorithm (GA) was used in combination with MLR, PLS, SVM, and ANN to find a smaller subset of the utilized descriptors. The results indicated that the GA-ANN model achieves the best \({\mathrm{IC}}_{50}\) prediction accuracy.
Similar content being viewed by others
References
Pishnamazi, M.; et al.: Measuring solubility of a chemotherapy-anti cancer drug (busulfan) in supercritical carbon dioxide. J. Mol. Liq. 317, 113954, 2020
Walsh, J.P.; Ghadiri, M.; Shirazian, S.: CFD approach for simulation of API release from solid dosage formulations. J. Mol. Liq. 317, 113899, 2020
Zabihi, S.; et al.: Experimental solubility measurements of fenoprofen in supercritical carbon dioxide. J. Chem. Eng. Data 65(4), 1425–1434, 2020
Ismail, H.Y.; et al.: Compartmental approach for modelling twin-screw granulation using population balances. Int. J. Pharm. 576, 118737, 2020
Shirazian, S.; et al.: Multi-dimensional population balance modelling of pharmaceutical formulations for continuous twin-screw wet granulation: determination of liquid distribution. Int. J. Pharm. 566, 352–360, 2019
Ismail, H.Y.; et al.: Developing ANN-Kriging hybrid model based on process parameters for prediction of mean residence time distribution in twin-screw wet granulation. Powder Technol. 343, 568–577, 2019
Sajjia, M.; et al.: ANN analysis of a roller compaction process in the pharmaceutical industry. Chem. Eng. Technol. 40(3), 487–492, 2017
Sajjia, M.; et al.: Mechanistic modelling of industrial-scale roller compactor ‘Freund TF-MINI model.’ Comput. Chem. Eng. 104, 141–150, 2017
Rezakazemi, M.; Mosavi, A.; Shirazian, S.: ANFIS pattern for molecular membranes separation optimization. J. Mol. Liq. 274, 470–476, 2019
Dashti, A.; et al.: Estimating CH4 and CO2 solubilities in ionic liquids using computational intelligence approaches. J. Mol. Liq. 271, 661–669, 2018
Rezakazemi, M.; et al.: Development of hybrid models for prediction of gas permeation through FS/POSS/PDMS nanocomposite membranes. Int. J. Hydrog. Energy 43(36), 17283–17294, 2018
Shirazian, S.; Alibabaei, M.: Using neural networks coupled with particle swarm optimization technique for mathematical modeling of air gap membrane distillation (AGMD) systems for desalination process. Neural Comput. Appl. 28(8), 2099–2104, 2017
Pishnamazi, M.; et al.: Computational fluid dynamics simulation of NO2 molecular sequestration from a gaseous stream using NaOH liquid absorbent through porous membrane contactors. J. Mol. Liq. 313, 113584, 2020
Marjani, A.; et al.: Mass transfer modeling CO2 absorption using nanofluids in porous polymeric membranes. J. Mol. Liq. 2020, 114115, 2020
Babanezhad, M.; et al.: Bubbly flow prediction with randomized neural cells artificial learning and fuzzy systems based on k – ε turbulence and Eulerian model data set. Sci. Rep. 10(1), 13837, 2020
Pishnamazi, M.; et al.: A thermokinetic model for penetrant-induced swelling in polymeric membranes: Water in polybenzimidazole membranes. J. Mol. Liq. 317, 114000, 2020
Pishnamazi, M.; et al.: Molecular investigation into the effect of carbon nanotubes interaction with CO2 in molecular separation using microporous polymeric membranes. Sci. Rep. 10(1), 13285, 2020
Pishnamazi, M.; et al.: Computational investigation on the effect of [Bmim][BF4] ionic liquid addition to MEA alkanolamine absorbent for enhancing CO2 mass transfer inside membranes. J. Mol. Liq. 314, 113635, 2020
Pishnamazi, M.; et al.: Computational study on SO2 molecular separation applying novel EMISE ionic liquid and DMA aromatic amine solution inside microporous membranes. J. Mol. Liq. 313, 113531, 2020
Jooshani, S.; et al.: Contaminant uptake by polymeric passive samplers: a modeling study with experimental validation. Chem. Eng. Res. Des. 129, 231–236, 2018
Khansary, M.A.; Marjani, A.; Shirazian, S.: On the search of rigorous thermo-kinetic model for wet phase inversion technique. J. Membr. Sci. 538, 18–33, 2017
Cao, Y.; et al.: Prediction of fluid pattern in a shear flow on intelligent neural nodes using ANFIS and LBM. Neural Comput. Appl. 32(17), 13313–13321, 2020
Babanezhad, M.; et al.: Developing intelligent algorithm as a machine learning overview over the big data generated by Euler–Euler method to simulate bubble column reactor hydrodynamics. ACS Omega 5(32), 20558–20566, 2020
Nguyen, Q.; et al.: Thermal and flow visualization of a square heat source in a nanofluid material with a cubic-interpolated pseudo-particle. ACS Omega 5(28), 17658–17663, 2020
Babanezhad, M.; Nakhjiri, A.T.; Shirazian, S.: Changes in the number of membership functions for predicting the gas volume fraction in two-phase flow using grid partition clustering of the ANFIS method. ACS Omega 5(26), 16284–16291, 2020
Perkins, R.; et al.: Quantitative structure–activity relationship methods: perspectives on drug discovery and toxicology. Environ. Toxicol. Chem. 22(8), 1666–1679, 2003
Walsh, D.M.; Selkoe, D.J.: Deciphering the molecular basis of memory failure in Alzheimer’s disease. Neuron 44(1), 181–193, 2004
Razavi, S.F.; et al.: Synthesis and evaluation of 4-substituted Coumarins as novel acetylcholinesterase inhibitors. Eur. J. Med. Chem. 64, 252–259, 2013
Selkoe, D.J.; Podlisny, M.B.: Deciphering the genetic basis of Alzheimer’s disease. Annu. Rev. Genom. Hum. Genet. 3, 67–99, 2002
Alvarez, A.; et al.: Acetylcholinesterase, a senile plaque component, affects the fibrillogenesis of amyloid-beta-peptides. Neurosci. Lett. 201(1), 49–52, 1995
Carreiras, M.C.; Marco, J.L.: Recent approaches to novel anti-Alzheimer therapy. Curr. Pharm. Des. 10(25), 3167–3175, 2004
Lleó, A.; Greenberg, S.M.; Growdon, J.H.: Current pharmacotherapy for Alzheimer’s disease. Annu. Rev. Med. 57(1), 513–533, 2006
Lee, S.J.; et al.: Inhibitory effect of esculetin on migration, invasion and matrix metalloproteinase-9 expression in TNF-α-induced vascular smooth muscle cells. Mol. Med. Rep. 4(2), 337–341, 2011
Huang, X.Y.; et al.: Study on the anticancer activity of Coumarin derivatives by molecular modeling. Chem. Biol. Drug Des. 78(4), 651–658, 2011
Bahadır, O.; et al.: Hepatoprotective and TNF-α inhibitory activity of Zosima absinthifolia extracts and Coumarins. Fitoterapia 82(3), 454–459, 2011
Huang, L.; et al.: Mechanism of action and resistant profile of anti-HIV-1 Coumarin derivatives. Virology 332(2), 623–628, 2005
Hwu, J.R.; et al.: Synthesis of new benzimidazole-Coumarin conjugates as anti-hepatitis C virus agents. Antiviral Res. 77(2), 157–162, 2008
Kumar, R.; Saha, A.; Saha, D.: A new antifungal Coumarin from Clausena excavata. Fitoterapia 83(1), 230–233, 2012
Arshad, A.; et al.: Synthesis and antimicrobial properties of some new thiazolyl Coumarin derivatives. Eur. J. Med. Chem. 46(9), 3788–3794, 2011
Roussaki, M.; et al.: A novel synthesis of 3-aryl Coumarins and evaluation of their antioxidant and lipoxygenase inhibitory activity. Bioorg. Med. Chem. Lett. 20(13), 3889–3892, 2010
Sashidhara, K.V.; et al.: Discovery and synthesis of novel 3-phenylcoumarin derivatives as antidepressant agents. Bioorg. Med. Chem. Lett. 21(7), 1937–1941, 2011
Fallarero, A.; et al.: Inhibition of acetylcholinesterase by Coumarins: the case of Coumarin 106. Pharmacol. Res. 58(3–4), 215–221, 2008
Shen, Q.; et al.: Synthesis and biological evaluation of functionalized Coumarins as acetylcholinesterase inhibitors. Eur. J. Med. Chem. 40(12), 1307–1315, 2005
Soto-Ortega, D.D.; et al.: Inhibition of amyloid-β aggregation by Coumarin analogs can be manipulated by functionalization of the aromatic center. Bioorg. Med. Chem. 19(8), 2596–2602, 2011
Zhou, X.; et al.: Design, synthesis, and acetylcholinesterase inhibitory activity of novel Coumarin analogues. Bioorg. Med. Chem. 16(17), 8011–8021, 2008
Alipour, M.; et al.: Novel Coumarin derivatives bearing N-benzyl pyridinium moiety: potent and dual binding site acetylcholinesterase inhibitors. Bioorg. Med. Chem. 20(24), 7214–7222, 2012
Abbott, M.L.: Introduction to multiple linear regression. In: Using Statistics in the Social and Health Sciences with SPSS® and Excel®, pp. 417–454 (2016)
Vinzi, V.E.: Handbook of partial least squares. In: Vinzi, V.E., et al. (eds.) Springer Handbooks of Computational Statistics. Springer, Berlin (2013)
Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32, 2001
Jain, A.K.; Mao, J.C.; Mohiuddin, K.M.: Artificial neural networks: a tutorial. Computer 29(3), 31, 1996
Burges, C.J.C.: A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Disc. 2(2), 121–167, 1998
Dragon software version 2.1. https://www.vcclab.org/lab/edragon/. Accessed: 05 Jan 2018
Deb, K.: An introduction to genetic algorithms. Sadhana 24(4), 293–315, 1999
Dragon molecular descriptor list. https://www.talete.mi.it/products/dragon_description.htm. Accessed: 05 Jan 2018
Libsvm—a library for support vector machines. https://www.csie.ntu.edu.tw/cjlin/libsvm/. Accessed: 05 Jan 2018
Ellman, G.L.; et al.: A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7(2), 88–000, 1961
Hadizadeh, F.; Vahdani, S.; Jafarpour, M.: Quantitative structure–activity relationship studies of 4-imidazolyl-1,4-dihydropyridines as calcium channel blockers. Iran. J. Basic Med. Sci. 16(8), 910–916, 2013
Clark, M.; Cramer, R.D.; Vanopdenbosch, N.: Validation of the general-purpose tripos 52 force-field. J. Comput. Chem. 10(8), 982–1012, 1989
Rostami, A.; Baghban, A.; Shirazian, S.: On the evaluation of density of ionic liquids: towards a comparative study. Chem. Eng. Res. Des. 147, 648–663, 2019
Devillers, J.: 1—strengths and weaknesses of the backpropagation neural network in QSAR and QSPR studies. In: Devillers, J. (ed.) Neural Networks in QSAR and Drug Design, pp. 1–46. Academic Press, London (1996)
Zabihi, S.; et al.: Development of hybrid ANFIS-CFD model for design and optimization of membrane separation of benzoic acid. J. Nonequilib. Thermodyn. 44(3), 285–293, 2019
Ismail, H.Y.; et al.: ANN-Kriging hybrid model for predicting carbon and inorganic phosphorus recovery in hydrothermal carbonization. Waste Manag. 85, 242–252, 2019
Bishop, C.: Pattern Recognition and Machine Learning. Information Science and Statistics. Springer, New York (2011)
Sahigara, F.; et al.: Assessing the validity of QSARs for ready biodegradability of chemicals: an applicability domain perspective. Curr. Comput. Aided Drug Des. 10(2), 137–147, 2014
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Ghanei-Nasab, S., Hadizadeh, F., Foroumadi, A. et al. A QSAR Study for the Prediction of Inhibitory Activity of Coumarin Derivatives for the Treatment of Alzheimer’s Disease. Arab J Sci Eng 46, 5523–5531 (2021). https://doi.org/10.1007/s13369-020-05064-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13369-020-05064-7