Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Gaussian Mixture Model with the Inclusion of Spatial Factor and Pixel Re-labelling: Application to MR Brain Image Segmentation

  • Research Article - Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

A fully automatic and accurate brain image segmentation divided into the three tissue types—Grey Matter, White Matter and Cerebrospinal Fluid (CSF)—is necessary in medical analysis. Gaussian Mixture Model (GMM) is one of the most widely implemented methods for MR Brain Image Segmentation, and Expectation–Maximization algorithm is used to estimate the parameters of the model. The major drawback existing in conventional GMM is that it considers each pixel as independent and does not incorporate the spatial interaction among the neighbouring pixels. This will lead to poor segmentation accuracy in the presence of noise and intensity inhomogeneity. To overcome this drawback, in the proposed method, the posterior probability is weighted with a spatial factor which improves the segmentation accuracy and makes the convergence also faster. Also, in the automatic segmentation of the IBSR MR Brain Image Data, a new approach of re-labelling the voxels for Grey Matter and CSF is proposed. The proposed method is tested on 20 low-resolution T1-weighted IBSR Brain Images and BrainWeb Simulated MR Images. The results show that the proposed method can improve the performance of MR Brain Image Segmentation by around 4 % over the state-of-the-art algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liew, A.; Yan, H.: Current methods in the automatic tissue segmentation of 3D magnetic resonance brain images. Curr. Med. Imaging Rev. 2(1), 91–103 (2006)

  2. Ji, Z.; Xia, Y.; Sun, Q.; Chen, Q.: Fuzzy local Gaussian mixture model for brain MR image segmentation. IEEE Trans. Inf. Technol. Biomed. 16(3), 339–347 (2012)

    Article  Google Scholar 

  3. Ji, Z.; Xia, Y.; Sun, Q.; Chen, Q.; Feng, D.: Adaptive scale fuzzy local Gaussian mixture model for brain MR image segmentation. Neurocomputing 134, 60–69 (2014)

    Article  Google Scholar 

  4. Ji, Z.; Liu, J.; Cao, G.; Sun, Q.; Chen, Q.: Robust spatially constrained fuzzy c-means algorithm for brain MR image segmentation. Pattern Recognit. 47, 2454–2466 (2014)

    Article  Google Scholar 

  5. Van Leemput, K.; Maes, F.; Vandermeulen, D.; Suetens, P.: A unifying framework for partial volume segmentation of brain MR images. IEEE Trans. Med. Imaging 22(1), 105–119 (2003)

    Article  MATH  Google Scholar 

  6. Greenspan, H.; Ruf, A.; Goldberger, J.: Constrained Gaussian mixture model framework for auotmatic segmentation of MR brain images. IEEE Trans. Med. Imaging 25(9), 1233–1245 (2006)

    Article  Google Scholar 

  7. Mayer, A.; Greenspan, H.: An adaptive mean-shift framework for MRI brain segmentation. IEEE Trans. Med. Imaging 28(8), 1238–1250 (2009)

    Article  Google Scholar 

  8. Lee, J.-D.; Su, H.-R.; Cheng, P.; Liou, M.; Aston, J.; Tsai, A.; Chen, C.Y.: MR image segmentation using a power transformation approach. IEEE Trans. Med. Imaging 28(6), 894–905 (2009)

    Article  Google Scholar 

  9. Scherrer, B.; Forbes, F.; Garbay, C.; Dojat, M.: Distributed local MRF models for tissue and structure brain segmentation. IEEE Trans. Med. Imag. 28(8), 1278–1295 (2009)

    Article  Google Scholar 

  10. Richard, N.; Dojat, M.; Garbay, C.: Distributed Markovian segmentation: application to MR brain scans. Pattern Recognit. 40(12), 3467–3480 (2007)

    Article  MATH  Google Scholar 

  11. Demirhan, A.; Güler, İ.: Combining stationary wavelet transform and self-organizing maps for brain MR image segmentation. Eng. Appl. Artif. Intell. 24(2), 358–367 (2011)

    Article  Google Scholar 

  12. Tian, G.J.; Xia, Y.; Zhang, Y.; Feng, D.: Hybrid genetic and variational expectation-maximization algorithm for Gaussian-mixture-model-based brain MR image segmentation. IEEE Trans. Inf Technol. Biomed. 15(13), 373–880 (2011)

    Article  Google Scholar 

  13. Portela, N.; Cavalcanti, G.; Ren, T.: Semi-supervised clustering for MR brain image Segmentation. Expert Syst. Appl. 41(4), 1492–1497 (2014)

    Article  Google Scholar 

  14. Nguyen, T.M.; Wu, Q.: Gaussian-mixture-model-based spatial neighborhood relationships for pixel labeling problem. IEEE Trans. Syst. Man Cybern. 42(1), 193–202 (2012)

    Article  Google Scholar 

  15. Bishop, C.: Pattern Recognition and Machine Learning. Springer, New York (2006)

    MATH  Google Scholar 

  16. Dempster, A.; Laird, N.; Rubin, D.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. 39(1), 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  17. Van Leemput, K.; Maes, F.; Vandermeulen, D.; Suetens, P.: Automated model-based bias field correction of MR images of the brain. IEEE Trans. Med. Imaging 18(10), 885–896 (1999)

    Article  Google Scholar 

  18. Manjon, J.; Carbonell-Caballero, J.; Garcia-Marti, G.; Marti-Bonmati, L.; Robles, M.: MRI denoising using non-local means. Med. Image Anal. 12, 514–523 (2008)

    Article  Google Scholar 

  19. Buades, A.; Coll, B.; Morel, J.: A non-local algorithm for image denoising. In: IEEE International Conference on Computer Vision and Pattern Recognition (2005)

  20. Zhao, F.; Fan, J.; Liu, H.: Optimal-selection-based suppressed fuzzy c-means clustering algorithm with self-tuning non local spatial information for image segmentation. Expert Syst. Appl. 41, 4083–4093 (2014)

    Article  Google Scholar 

  21. Carson, C.; Belongie, S.; Greenspan, H.; Malik, J.: Image segmentation using expectation-maximization and its application to image querying. IEEE Trans. Pattern Anal. Mach. Intell. 24(8), 1026–1038 (2002)

    Article  Google Scholar 

  22. www.bic.mni.mcgill.ca/brainweb/

  23. www.nitrc.org/projects/ibsr

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Meena Prakash.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meena Prakash, R., Kumari, R.S.S. Gaussian Mixture Model with the Inclusion of Spatial Factor and Pixel Re-labelling: Application to MR Brain Image Segmentation. Arab J Sci Eng 42, 595–605 (2017). https://doi.org/10.1007/s13369-016-2278-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-016-2278-0

Keywords

Navigation