Abstract
Fucoidan—a sulfated marine seaweed obtained from brown algae—has raised considerable interest in the scientific community over the last decade as it possesses a wide range of biological activities such as antioxidant, antiviral, anti-inflammatory, anticoagulant, antithrombotic, anticarcinogenic, and immunoregulatory. This polysaccharide finds application as a drug delivery vehicle due to its non-cytotoxicity, biocompatibility, and biodegradability. Besides, nano biomedical systems have used this marine alga for diagnostic and therapeutic purposes. Fucoidan has been extensively studied for use in regenerative medicines, in wound healing, and for sustained drug delivery due to its large biodiversity, cost-effectiveness, and mild procedures for extraction and purification. However, the main concern that limits its application is the variance in its batch-to-batch extraction owing to species type, harvesting, and climatic factors. The current review encloses a compendious overview of the origin, chemical structure, and physicochemical and biological properties of fucoidan and its significant role in nanodrug delivery systems. Special emphasis is given to the recent advances in the use of native/modified fucoidan, its combination with chitosan and metal ions for nanodrug delivery applications, especially in cancer treatment. Additionally, use of fucoidan in human clinical trials as a complementary therapeutic agent is also reviewed.
Graphical Abstract
Reproduced from Anisha GS, Padmakumari S, Patel AK, Pandey A, Singhania RR. Fucoidan from marine macroalgae: biological actions and applications in regenerative medicine, drug delivery systems and food industry. Bioengineering, 2022;9:472 [Ref. 17]. Copyright (2022) Open Access Article from MDPI, Basel, Switzerland
Reproduced from Mar. Drugs, Cunha, L; Grenha, A. Sulfated seaweed polysaccharides as multifunctional materials in drug delivery applications, pp. 42 (1–41) [Ref. 38]. Copyright (2016) Open Access Article from MDPI, Basel, Switzerland
Reproduced from Peng SL, Lai CH, Chu PY, Hsieh JT, Tseng YC, Chiu SC, Lin YH. (2020). Nanotheranostics with the combination of improved targeting, therapeutic effects, and molecular imaging. Front Bioeng Biotechnol. 2020;8:570,490. [Ref. 96]. Copyright (2020) Open Access from Frontiers, Lausanne, Switzerland
Similar content being viewed by others
Availability of data and materials
Not applicable.
References
Vijayan SR, Santhiyagu P, Ramasamy R, Arivalagan P, Kumar G, Ethiraj K, Ramaswamy BR. Seaweeds: a resource for marine bionanotechnology. Enzyme Microb Technol. 2016;95:45–57. https://doi.org/10.1016/j.enzmictec.2016.06.009.
Luthuli S, Wu S, Cheng Y, Zheng X, Wu M, Tong H. Therapeuticeffects of fucoidan: a review onrecent studies. Mar Drugs. 2019;17:487. https://doi.org/10.3390/md17090487.
Zharov VP, Kim J.-W, Curiel DT, Everts M. Self-assembling nanoclusters in living systems: application for integrated photothermal nanodiagnostics and nanotherapy. Nanomed: Nantechnol Biol Med. 2005;1:326–345. https://doi.org/10.1016/j.nano.2005.10.006
Qureshi D, Nayak SK, Maji S, Kim D, Banerjee I, Pal K. Carrageenan: a wonder polymer from marine algae for potential drug delivery applications. Curr Pharm Des. 2019;25:1172–86. https://doi.org/10.2174/1381612825666190425190754.
Siepmann J, Siegel RA, Rathbone MJ. Fundamentals and applications of controlled release drug delivery (Vol. 3) New York: Springer 2012. https://doi.org/10.1007/978-1-4614-0881-9
Wang P, Kankala RK, Chen B, Long R, Cai D, Liu Y, Wang S. Poly‐allylamine hydrochloride and fucoidan‐based self‐assembled polyelectrolyte complex nanoparticles for cancer therapeutics. J Biomed Mater Res A, 2019;107:339–347. https://doi.org/10.1002/jbm.a.36526
Kamaly N, Yameen B, Wu J, Farokhzad OC. Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem Rev. 2016;116:2602–2663.https://doi.org/10.1021/acs.chemrev.5b00346
Appeltans W, Ahyong ST, Anderson G, Angel MV, Artois T, Bailly N, Bamber R, Barber A, Bartsch I, Berta A. The magnitude of global marine species diversity. Curr Biol. 2012;22:2189–202. https://doi.org/10.1016/j.cub.2012.09.036.
Lira MCB, Santos-Magalhães NS, Nicolas V, Marsaud V, Silva MPC, Ponchel G, Vauthier C. Cytotoxicity and cellular uptake of newly synthesized fucoidan-coated nanoparticles. Eur J Pharm Biopharm. 2011;79:162–70. https://doi.org/10.1016/j.ejpb.2011.02.013.
Venkatesan J, Anil S, Kim SK, Shim MS. Seaweed polysaccharide-based nanoparticles: preparation and applications for drug delivery. Polymers, 2016;8:30. https://doi.org/10.3390/polym8020030
Ermakova S, Kusaykin M, Trincone A, Tatiana Z. Are multifunctional marine polysaccharides a myth or reality? Front Chem. 2015;3:39. https://doi.org/10.3389/fchem.2015.00039.
Cardoso MJ, Costa RR, Mano JF. Marine origin polysaccharides in drug delivery systems. Mar Drugs. 2016;14:34. https://doi.org/10.3390/md14020034.
Manivasagan P, Oh J. Marine polysaccharide-based nanomaterials as a novel source of nanobiotechnological applications. Int J Biol. 2016;82:315–27. https://doi.org/10.1016/j.ijbiomac.2015.10.081.
Oliveira C, Neves NM, Reis RL, Martins A, Silva TH. A review on fucoidan antitumor strategies: from a biological active agent to a structural component of fucoidan-based systems. Carbohydr Polym. 2020;239:116131. https://doi.org/10.1016/j.carbpol.2020.116131
Etman SM, Elnaggar YS, Abdallah OY. Fucoidan, a natural biopolymer in cancer combating: From edible algae to nanocarrier tailoring. Int J Biol Macromol. 2020;147:799–808. https://doi.org/10.1016/j.ijbiomac.2019.11.191.
Tran PH, Duan W, Tran TT. Fucoidan-based nanostructures: a focus on its combination with chitosan and the surface functionalization of metallic nanoparticles for drug delivery. Int J Pharm. 2020;575:118956. https://doi.org/10.1016/j.ijpharm.2019.118956
Anisha GS, Padmakumari S, Patel AK, Pandey A, Singhania RR. Fucoidan from marine macroalgae: biological actions and applications in regenerative medicine, drug delivery systems and food industry. Bioengineering, 2022;9:472.https://doi.org/10.3390/bioengineering9090472
Bo L, Fei L, Xinjun W, Ruixiang Z. Fucoidan: structure and bioactivity. Molecules. 2008;13:1671–95. https://doi.org/10.3390/molecules13081671.
Holtkamp AD, Kelly S, Ulber R, Lang S. Fucoidans and fucoidanases-focus on techniques for molecular structure elucidation and modification of marine polysaccharides. Appl Microbiol Biotechnol. 2009;82:1–11. https://doi.org/10.1007/s00253-008-1790-x.
Padua D, Rocha E, Gargiulo D, Ramos AA. Bioactive compounds from brown seaweeds: phloroglucinol, fucoxanthin and fucoidan as promising therapeutic agents against breast cancer. Phytochem Lett. 2015;14:91–8. https://doi.org/10.1016/j.phytol.2015.09.007.
Vo T-S, Kim S-K. Fucoidans as a natural bioactive ingredient for functional foods. J Funct Foods. 2013;5:16–27. https://doi.org/10.1016/j.jff.2012.08.007.
Wijesinghe WAJP, Jeon Y. Biological activities and potential industrial applications of fucose rich sulfated polysaccharides and fucoidans isolated from brown seaweeds: a review. Carbohydr Polym. 2012;88:13–20. https://doi.org/10.1016/j.carbpol.2011.12.029.
Athukorala Y, Jung WK, Vasanthan T, Jeon YJ. An anticoagulative polysaccharide from an enzymatic hydrolysate of Ecklonia cava Carbohydr Polym. 2006;66:184–91. https://doi.org/10.1016/j.carbpol.2006.03.002.
Bilal M, Iqbal H. Marine seaweed polysaccharides-based engineered cues for the modern biomedical sector. Mar Drugs. 2020;18:7. https://doi.org/10.3390/md18010007.
Usov AI, Zelinski ND. Chemical structures of algal polysaccharides. In: Functional Ingredients from Algae for Foods and Nutraceuticals; H. Domínguez, Ed.; Elsevier Science: Cambridge, UK 2013, pp 45–49. https://doi.org/10.1533/9780857098689.1.23
Berteau O, Mulloy B. Sulfated fucans, fresh perspectives: structures, functions, and biological properties of sulfated fucans and an overview of enzymes active toward this class of polysaccharide. Glycobiology. 2003;13:29R-40R. https://doi.org/10.1093/glycob/cwg058.
Guangling J, Guangli Y, Junzeng Z, Ewart HS. Chemical structures and bioactivities of sulfatedpolysaccharides from marine algae. Mar Drugs, 2011;9:196–233. https://doi.org/10.3390/md9020196
Zayed A, Ulber R. Fucoidans: Downstream processes and recent applications. Mar Drugs. 2020;18:170. https://doi.org/10.3390/md18030170.
Wu L, Sun J, Su X, Yu Q, Yu Q, Zhang PA. A review about the development of fucoidan in antitumor activity: progress and challenges. Carbohydr Polym. 2016;154:96–111. https://doi.org/10.1016/j.carbpol.2016.08.005.
Torres MD, Flórez-Fernández N, Simón-Vázquez R, Giménez-Abián JF, Díaz JF, González-Fernández Á, Domínguez H. Fucoidans: the importance of processing on their anti-tumoral properties. Algal Res. 2020;45:101748. https://www.sciencedirect.com/science/article/pii/S2211926419307180
Garcia-Vaquero M, O’Doherty JV, Tiwari BK, Sweeney T, Rajauria G. Enhancing the extraction of polysaccharides and antioxidants from macroalgae using sequential hydrothermal-assisted extractionfollowed by ultrasound and thermal technologies. Mar Drugs. 2019;17:457. https://doi.org/10.3390/md17080457.
Alboofetileh M, Rezaei M, Tabarsa M, You S, Mariatti F, Cravotto G. Subcritical water extraction as an efficient technique to isolate biologically-active fucoidans from Nizamuddiniazanardinii. Int J Biol Macromol. 2019;128:244–253. https://doi.org/10.1016/j.ijbiomac.2019.01.119
Somasundaram SN, Shanmugam S, Subramanian B, Jaganathan R. Cytotoxic effect of fucoidan extractedfrom Sargassum cinereum on colon cancer cell line HCT-15. Int J Biol Macromol. 2016;91:1215–23. https://doi.org/10.1016/j.ijbiomac.2016.06.084.
Zayed A, Dienemann C, Giese C, Krämer R, Ulber R. An immobilized perylene diimide derivative for fucoidan purification from a crude brown algae extract. Process Biochem. 2018;65:233–8. https://doi.org/10.1016/j.procbio.2017.10.012.
Zayed A, Ulber R. Fucoidan production: approval key challenges and opportunities. Carbohydr Polym. 2019;211:289–97. https://doi.org/10.1016/j.carbpol.2019.01.105.
Li G, Row KH. Magnetic molecularly imprinted polymers for recognition and enrichment of polysaccharides from seaweed. J Sep Sci. 2017;40:4765–72. https://doi.org/10.1002/jssc.201800329.
Guthrie L, Wolfson S, Kelly L. The human gut chemical landscape predicts microbe mediated biotransformation of foods and drugs. eLife 2019;8:e42866. https://doi.org/10.7554/eLife.42866
Cunha L, Grenha A. Sulfated seaweed polysaccharides as multifunctional materials in drug delivery applications. Mar Drugs. 2016;14:42. https://doi.org/10.3390/md14030042.
Hahn T, Lang S, Ulber R, Muffler K. Novel procedures for the extraction of fucoidan from brown algae. Process Biochem. 2012;47:1691–8. https://doi.org/10.1016/j.procbio.2012.06.016.
Ale MT, Mikkelsen JD, Meyer AS. Important determinants for fucoidan bioactivity: a critical review of structure-function relations and extraction methods for fucose containing sulfated polysaccharides from brown seaweeds. Mar Drugs. 2011;9:2106–30. https://doi.org/10.3390/md9102106.
Duarte MER, Cardoso MA, Noseda MD, Cerezo AS. Structural studies on fucoidans from the brown seaweed Sargassum stenophyllum. Carbohydr Res. 2001;333:281–93. https://doi.org/10.1016/S0008-6215(01)00149-5.
Kasai A, Arafuka S, Koshiba N, Takahashi D, Toshima K. Systematic synthesis of low-molecular weight fucoidan derivatives and their effect on cancer cells. Org Biomol Chem 2015;13:10556–10568.https://doi.org/10.1039/C5OB01634G
Cho ML, Lee BY, You SG. Relationship between oversulfation and conformation of low and high molecular weight fucoidans and evaluation of their in vitro anticancer activity. Molecules, 2010;16:291–297.https://doi.org/10.3390/molecules16010291
Brandi J, Oliveira EC, Monteiro NK, Vasconcelos AFD, Dekker RFH, Barbosa AM, Silveira JLM, Mourao PAS, da Silva M. de LC. Chemical modification of botryosphaeran: structural characterization and anticoagulant activity of a water-soluble sulfonated (1→3)(1→6)-β-D-glucan. J Microbiol Biotechnol. 2011;21:1036–1042. https://doi.org/10.4014/jmb.1105.05020
Yuan H, Zhang W, Li X, Lu X, Li N, Gao X, Song J. Preparation and in vitro antioxidant activity of κ-carrageenan oligosaccharides and their oversulfated, acetylated, and phosphorylated derivatives. Carbohydr Res. 2005;340:685–92. https://doi.org/10.1016/j.carres.2004.12.026.
Liu H, Wang J, Zhang Q, Zhang H. The effect of different substitute groups and molecular weights of fucoidan on neuroprotective and anticomplement activity. Int J Biol Macromol. 2018;113:82–9. https://doi.org/10.1016/j.ijbiomac.2018.02.109.
Suprunchuk VE. Low-molecular-weight fucoidan: chemical modification, synthesis of its oligomeric fragments and mimetics. Carbohydr Res, 2019;485:107806. https://doi.org/10.1016/j.carres.2019.107806
Qiu X, Amarasekara A, Doctor V. Effect of oversulfation on the chemical and biological properties of fucoidan. Carbohydr Polym. 2006;63:224–8. https://doi.org/10.1016/j.carbpol.2005.08.064.
Xiangdong Q, Amarasekara A, Doctor V. Effect of oversulfation on the chemical and biological properties of fucoidan. Carbohydr Polym. 2006;63:224–228. https://doi.org/10.1016/j.carbpol.2005.08.064
Hwang P-A, Hung Y-L, Phan NN, Hieu B-T-N, Chang P-M, Li K-L, Lin Y-C. The in vitro and in vivo effects of the low molecular weight fucoidan on the bone osteogenic differentiation properties. Cytotechnology, 2016;68:1349–1359.
Zuo T, Li X, Chang Y, Duan G, Yu L, Zheng R, Xue C, Tang Q. Dietary fucoidan of Acaudinamolpadioides and its enzymatically degraded fragments could prevent intestinal mucositis induced by chemotherapy in mice. Food Funct. 2015;6:415–422. https://doi.org/10.1039/C4FO00567H
Park JH, Choi SH, Park SJ, Lee YJ, Park JH, Song PH, Cho CM, Ku SK, Song CH. Promoting wound healing using low molecular weight fucoidan in a full-thickness dermal excision rat model. Mar Drugs. 2017;15:112–5. https://doi.org/10.3390/md15040112.
Wang Z, Liu T, Chen X, You H, Zhang Q, Xue J, Zheng Y, Luo D. Low molecular weight fucoidan ameliorates hind limb ischemic injury in type 2 diabetic rats. J Ethnopharmacol. 2018;210:434–42. https://doi.org/10.1016/j.jep.2017.09.014.
Ustyuzhanina NE, Bilan MI, Ushakova NA, Usov AI, Kiselevskiy MV, Nifantiev NE. Fucoidans: pro- or antiangiogenic agents? Glycobiology, 2014;24:1265–1274. https://doi.org/10.1093/glycob/cwu063
Kim K-T, Rioux L-E, Turgeon SL. Molecular weight and sulfate content modulate the inhibition of α-amylase by fucoidan relevant for type 2 diabetes management. Pharma Nutrition. 2015;3:108–14. https://doi.org/10.1016/j.phanu.2015.02.001.
Rioux L, Turgeon SL, Beaulieu M. Rheological characterisation of polysaccharides extracted from brown seaweeds. J Sci Food Agric. 2007;87:1630–1638. https://doi.org/10.1016/j.carbpol.2007.01.009
Jung-Bum L, Hayashi K, Hashimoto M, Nakano T, Hayashi T. Novel antiviral fucoidan from Sporophyll of Undaria pinnatifida (Mekabu). Chem Pharm Bull. 2004;52:1091–4. https://doi.org/10.1248/cpb.52.1091.
Silva TH, Alves A, Popa EG, Reys LL, Gomes ME, Sousa RA, Silva SS, Mano JF, Reis RL. Marine algae sulfated polysaccharides for tissue engineering and drug delivery approaches. Biomatter. 2012;2:278–89. https://doi.org/10.4161/biom.22947.
George A, Shah PA, Shrivastav PS. Natural biodegradable polymers based nano-formulations for drug delivery: a review. Int J Pharm. 2019;561:244–64. https://doi.org/10.1016/j.ijpharm.2019.03.011.
Alkilany AM, Zhu L, Weller H, Mews A, Parak WJ, Barz M, Feliu N. Ligand density on nanoparticles: a parameter with critical impact on nanomedicine. Adv Drug Deliv Rev. 2019;143:22–36. https://doi.org/10.1016/j.addr.2019.05.010.
Lee H. Kim JS, Kim E. Fucoidan from seaweed Fucus vesiculosus inhibits migration and invasion of human lung cancer cell via PI3K-Akt-mTOR pathways. PloS one, 2012;7:e50624. https://doi.org/10.1371/journal.pone.0050624
Zhang W, Oda T, Yu Q, Jin JO. Fucoidan from Macrocystis pyrifera has powerful immune-modulatory effects compared to three other fucoidans. Mar Drugs, 2015;13:1084–1104. https://doi.org/10.3390/md13031084
Teruya T, Tatemoto H, Konishi T, Tako M. Structural characteristics and in vitro macrophage activation of acetyl fucoidan from Cladosiphonokamuranus. Glycoconj J. 2009;26:1019–1028. https://doi.org/10.1007/s10719-008-9221-x
Lee KW, Jeong D, Na K. Doxorubicin loading fucoidan acetate nanoparticles for immune and chemotherapy in cancer treatment. Carbohydr Polym. 2013;94:850–6. https://doi.org/10.1016/j.carbpol.2013.02.018.
Jafari M, Sriram V, Xu Z, Harris GM, Lee JY. Fucoidan-doxorubicin nanoparticles targeting P-selectin for effective breast cancer therapy. Carbohydr Polym. 2020;249:116837. https://doi.org/10.1016/j.carbpol.2020.116837
Liu X, Liu X, Kusaykin MI, Zhang M, Bai X, Cui T, Shi Y, Liu C, Jia A. Structural characterization of a P-selectin and EGFR dual-targeting fucoidan from Sargassum fusiforme. Int J Biol Macromol. 2022;199:86–95. https://doi.org/10.1016/j.ijbiomac.2021.12.135.
Guo R, Deng M, He X, Li, M, Li J, He P, Liu H, Li M, Zhang Z, He Q. Fucoidan-functionalized activated platelet-hitchhiking micelles simultaneously track tumor cells and remodel the immunosuppressive microenvironment for efficient metastatic cancer treatment. Acta Pharm Sin B, 2022;12:467–482.https://doi.org/10.1016/j.apsb.2021.05.012
Deepika MS, Thangam R, Sheena TS, Sasirekha R, Sivasubramanian S, Babu MD, Jeganathan K, Thirumurugan R. A novel rutin-fucoidan complex based phytotherapy for cervical cancer through achieving enhanced bioavailability and cancer cell apoptosis. Biomed Pharmacother. 2019;109:1181–95. https://doi.org/10.1016/j.biopha.2018.10.178.
Etman SM, Abdallah OY, Elnaggar YS. Novel fucoidan based bioactive targeted nanoparticles from Undaria pinnatifida for treatment of pancreatic cancer. Int J Biol Macromol. 2020;145:390–401. https://doi.org/10.1016/j.ijbiomac.2019.12.177.
Oliveira C, Neves NM, Reis RL, Martins A, Silva TH. Gemcitabine delivered by fucoidan/chitosan nanoparticles presents increased toxicity over human breast cancer cells. Nanomedicine. 2018;13:2037–50. https://doi.org/10.2217/nnm-2018-0004.
Coutinho AJ, Lima SAC, Afonso CM, Reis S. Mucoadhesive and pH responsive fucoidan-chitosan nanoparticles for the oral delivery of methotrexate. Int J Biol Macromol. 2020;158:180–8. https://doi.org/10.1016/j.ijbiomac.2020.04.233.
Lu K-Y, Li R, Hsu C-H, Lin C-W, Chou S-C, Tsai M-L, Mi F-L. Development of a new type of multifunctional fucoidan-based nanoparticles for anticancer drug delivery. Carbohydr Polym. 2017;165:410–20. https://doi.org/10.1016/j.carbpol.2017.02.065.
Liu Q, Chen J, Qin Y, Jiang B, Zhang T. Zein/fucoidan-based composite nanoparticles for the encapsulation of pterostilbene: preparation, characterization, physicochemical stability, and formation mechanism. Int J Biol Macromol. 2020;158:461–470. https://doi.org/10.1016/j.ijbiomac.2020.04.128
Kang S, Kang K, Chae A, Kim YK, Jang H, Min DH. Fucoidan-coated coral-like Pt nanoparticles for computed tomography-guided highly enhanced synergistic anticancer effect against drug-resistant breast cancer cells. Nanoscale, 2019;11:15173–15183.
Guo C, Su Y, Cheng Z, Chen Q, Guo H, Kong M, Chen, D. Novel ROS-responsive marine biomaterial fucoidan nanocarriers with AIE effect and chemodynamic therapy. Int J Biol Macromol. 2022;202:112–121. https://doi.org/10.1016/j.ijbiomac.2022.01.060
Li L, Wang B, Zhang Q, Song P, Jiang T, Zhao X. Hypoxia responsive fucoidan-based micelles for oxidative stress-augmented chemotherapy. Eur Polym. 2022;111340. https://doi.org/10.1016/j.eurpolymj.2022.111340
Chodari L, Dilsiz Aytemir M, Vahedi P, Alipour M, Vahed SZ, Khatibi SMH, Elham A, Mohammadreza A, Eftekhari A. Targeting mitochondrial biogenesis with polyphenol compounds. Oxid Med Cell Longev. 2021. https://doi.org/10.1155/2021/4946711.
Fang L, Lin H, Wu Z, Wang Z, Fan X, Cheng Z, Xiaoya H, Chen D. In vitro/vivo evaluation of novel mitochondrial targeting charge-reversal polysaccharide-based antitumor nanoparticle. Carbohydr Polym. 2020;234:115930. https://doi.org/10.1016/j.carbpol.2020.115930
Eftekhari A, Dizaj SM, Chodari L, Sunar S, Hasanzadeh A, Ahmadian E, Hasanzadeh M. The promising future of nano-antioxidant therapy against environmental pollutants induced-toxicities. Biomed Pharmacother. 2018;103:1018–27. https://doi.org/10.1016/j.biopha.2018.04.126.
Silva MMCL, dos Santos Lisboa L, Paiva WS, Batista LANC, Luchiari AC, Rocha HAO, Camara RBG. Comparison of in vitro and in vivo antioxidant activities of commercial fucoidans from Macrocystis pyrifera, Undaria pinnatifida, and Fucus vesiculosus. Int J Biol Macromol. 2022;216:757–767. https://doi.org/10.1016/j.ijbiomac.2022.07.110
Koh HSA, Lu J, Zhou W. Structure characterization and antioxidant activity of fucoidan isolated from Undaria pinnatifida grown in New Zealand. Carbohydr Polym. 2019;212:178–185. https://doi.org/10.1016/j.carbpol.2019.02.040
Yu J, Li Q, Wu J, Yang X, Yang S, Zhu W, Liu Y, Tang W, Nie S, Hassouna A, Whute WL, Zhao Y, Lu J. Fucoidan extracted from sporophyll of Undaria pinnatifida grown in Weihai, China–Chemical Composition and Comparison of Antioxidant Activity of Different Molecular Weight Fractions. Front Nutr. 2021;8:636930. https://doi.org/10.3389/fnut.2021.636930
Lim S, Choi JI, Park H. Antioxidant activities of fucoidan degraded by gamma irradiation and acidic hydrolysis. Radiat Phys Chem. 2015;109:23–26.https://doi.org/10.1016/j.radphyschem.2014.12.008
Wu SY, Parasuraman V, Arunagiri V, Gunaseelan S, Chou HY, Anbazhagan R, Lai JY, Prasad R. Radioprotective effect of self-assembled low molecular weight Fucoidan–Chitosan nanoparticles. Int J Pharm. 2020;579:119161. https://doi.org/10.1016/j.ijpharm.2020.119161
Huang YC, Li RY, Chen JY, Chen JK. Biphasic release of gentamicin from chitosan/fucoidan nanoparticles for pulmonary delivery. Carbohydr Polym. 2016;138:114–22. https://doi.org/10.1016/j.carbpol.2015.11.072.
Barbosa AI, Costa Lima SA, Reis S. Application of pH-responsive fucoidan/chitosan nanoparticles to improve oral quercetin delivery. Molecules. 2019;24:346. https://doi.org/10.3390/molecules24020346.
Trachootham D, Alexandre J, Huang P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov. 2009;8:579–91. https://doi.org/10.1038/nrd2803.
Schumacker PT. Reactive oxygen species in cancer cells: live by the sword, die by the sword. Cancer Cell. 2006;10:175–6. https://doi.org/10.1016/j.ccr.2006.08.015.
Choi DG, Venkatesan J, Shim MS. Selective anticancer therapy using pro-oxidant drug-loaded chitosan–fucoidan nanoparticles. Int J Mol Sci. 2019;20:3220. https://doi.org/10.3390/ijms20133220
Venkatesan J, Murugan SS, Seong GH. Fucoidan-based nanoparticles: preparations and applications. Int J Biol Macromol. 2022;217:652–667.https://doi.org/10.1016/j.ijbiomac.2022.07.068
Pinto RJ, Bispo D, Vilela C, Botas AM, Ferreira RA, Menezes, AC, Campos F, Oliveira H, Abreu MH, Santos SAO, Freire, CS. One-minute synthesis of size-controlled fucoidan-gold nanosystems: Antitumoral activity and dark field imaging. Materials, 2020;13:1076. https://doi.org/10.3390/ma13051076
Cheng TM, Li R, Kao YCJ, Hsu CH, Chu HL, Lu KY, Changou CA, Chang CC, Chang LH, Tsai ML, Mi FL. Synthesis and characterization of Gd-DTPA/fucoidan/peptide complex nanoparticle and in vitro magnetic resonance imaging of inflamed endothelial cells. Mater Sci Eng C, 2020;114:111064. https://doi.org/10.1016/j.msec.2020.111064
Manivasagan P, Bharathiraja S, Bui NQ, Jang B, Oh YO, Lim IG, Oh J. Doxorubicin-loaded fucoidan capped gold nanoparticles for drug delivery and photoacoustic imaging. Int J Biol Macromol. 2016;91:578–88. https://doi.org/10.1016/j.ijbiomac.2016.06.007.
Jang B, Moorthy MS, Manivasagan P, Xu L, Song K, Lee KD, Kwak M, Oh J, Jin JO. Fucoidan-coated CuS nanoparticles for chemo-and photothermal therapy against cancer. Oncotarget, 2018;9:12649.
Costa B, Corrêa LB, Silva PM, de Sá, YAPJ, Guimarães FV, Alencar L MR, Simões RL, Helal-Neto E, Ricci-Junior E, Maria das G, Muller de Oliveira H, Rosas EC, Santos-Oliveira R. Using pure Fucoidan and radiolabeled Fucoidan (99mTc-Fucoidan) as a new agent for inflammation diagnosis and therapy. Food Hydrocoll. 2022;2:100049. https://doi.org/10.1016/j.fhfh.2021.100049
Peng SL, Lai CH, Chu PY, Hsieh JT, Tseng YC, Chiu SC, Lin YH. (2020). Nanotheranostics with the combination of improved targeting, therapeutic effects, and molecular imaging. Front Bioeng Biotechnol. 2020;8:570490. https://doi.org/10.3389/fbioe.2020.570490
Huang YC, Liu TJ. Mobilization of mesenchymal stem cells by stromal cell-derived factor-1 released from chitosan/tripolyphosphate/fucoidan nanoparticles. Acta Biomater. 2012;8:1048–56. https://doi.org/10.1016/j.actbio.2011.12.009.
Wu SJ, Don TM, Lin CW, Mi FL. Delivery of berberine using chitosan/fucoidan-taurine conjugate nanoparticles for treatment of defective intestinal epithelial tight junction barrier. Mar Drugs. 2014;12:5677–97. https://doi.org/10.3390/md12115677.
Chen CH, Lin YS, Wu SJ, Mi FL. Mutlifunctional nanoparticles prepared from arginine-modified chitosan and thiolated fucoidan for oral delivery of hydrophobic and hydrophilic drugs. Carbohydr Polym. 2018;193:163–72. https://doi.org/10.1016/j.carbpol.2018.03.080.
Lee MC, Huang YC. Soluble eggshell membrane protein-loaded chitosan/fucoidan nanoparticles for treatment of defective intestinal epithelial cells. Int J Biol Macromol. 2019;131:949–58. https://doi.org/10.1016/j.ijbiomac.2019.03.113.
Ahmadian E, Eftekhari A, Kavetskyy T, Khosroushahi AY, Turksoy VA, Khalilov R. Effects of quercetin loaded nanostructured lipid carriers on the paraquat-induced toxicity in human lymphocytes. Pestic Biochem Physiol 2020;167:104586. https://doi.org/10.1016/j.pestbp.2020.104586
Hasanzadeh A, Gholipour B, Rostamnia S, Eftekhari A, Tanomand A, Khaksar S, Khalilov R. Biosynthesis of AgNPs onto the urea-based periodic mesoporous organosilica (AgxNPs/Ur-PMO) for antibacterial and cell viability assay. J Colloid Interface Sci. 2021;585:676–83. https://doi.org/10.1016/j.jcis.2020.10.047.
Elbi S, Nimal TR, Rajan VK, Baranwal G, Biswas R, Jayakumar R, Sathianarayanan S. Fucoidan coated ciprofloxacin loaded chitosan nanoparticles for the treatment of intracellular and biofilm infections of Salmonella. Colloids Surf B Biointerfaces. 2017;160:40–7. https://doi.org/10.1016/j.colsurfb.2017.09.003.
Tsai LC, Chen CH, Lin CW, Ho YC, Mi FL. Development of mutlifunctional nanoparticles self-assembled from trimethyl chitosan and fucoidan for enhanced oral delivery of insulin. Int J Biol Macromol. 2019;126:141–150. https://doi.org/10.1016/j.ijbiomac.2018.12.182
Zhao L, Seth A, Wibowo N, Zhao CX, Mitter N, Yu C, Middelberg AP. Nanoparticle vaccines. Vaccine. 2014;32:327–37. https://doi.org/10.1016/j.vaccine.2013.11.069.
Chuang CC, Tsai MH, Yen HJ, Shyu HF, Cheng KM, Chen XA, Chen CC, Young JJ, Kau JH. A fucoidan-quaternary chitosan nanoparticle adjuvant for anthrax vaccine as an alternative to CpG oligodeoxynucleotides. Carbohydr Polym. 2020;229:115403. https://doi.org/10.1016/j.carbpol.2019.115403
Shanmugapriya K, Kim H, Kang HW. Fucoidan-loaded hydrogels facilitate wound healing using photodynamic therapy by in vitro and in vivo evaluation. Carbohydr Polym. 2020;247:116624. https://doi.org/10.1016/j.carbpol.2020.116624
Wardani G, Nugraha J, Mustafa M, Sudjarwo SA. Antioxidative stress and anti-inflammatory activity of fucoidan nanoparticles against nephropathy of streptozotocin-induced diabetes in rats. Evid Based Complementary Altern Med. 2022. https://doi.org/10.1155/2022/3405871.
Gu X, Liu Z, Tai YF, Zhou LY, Liu K, Kong D, Midgley AC, Zuo XC. Hydrogel and nanoparticle carriers for kidney disease therapy: trends and recent advancements. Prog Biomed Eng. 2022;4:022006. https://doi.org/10.1088/2516-1091/ac6e18
Shu G, Lu C, Wang Z, Du Y, Xu X, Xu M, Zhao Z, Chen M, Dai Y, Weng Q, Fang, S. Fucoidan-based micelles as P-selectin targeted carriers for synergistic treatment of acute kidney injury. Nanomedicine 2021;32:102342. https://doi.org/10.1016/j.nano.2020.102342
Lin Y, Qi X, Liu H, Xue K, Xu S, Tian Z. The anti-cancer effects of fucoidan: a review of both in vivo and in vitro investigations. Cancer Cell Int. 2020;20:1–14. https://doi.org/10.1186/s12935-020-01233-8
Citkowska A, Szekalska M, Winnicka K. Possibilities of fucoidan utilization in the development of pharmaceutical dosage forms. Mar Drugs, 2019;17:458. https://doi.org/10.3390/md17080458
Tokita Y, Nakajima K, Mochida H, Iha M, Nagamine T. Development of a fucoidan-specific antibody and measurement of fucoidan in serum and urine by sandwich ELISA. Biosci Biotechnol Biochem. 2010;0912261792–0912261792. https://doi.org/10.1271/bbb.90705
Kwak JY. Fucoidan as a marine anticancer agent in preclinical development. Mar Drugs. 2014;12:851–70. https://doi.org/10.3390/md12020851.
Ikeguchi M, Yamamoto M, Arai Y, Maeta Y, Ashida K, Katano K, Miki Y, Kimura T. Fucoidan reduces the toxicities of chemotherapy for patients with unresectable advanced or recurrent colorectal cancer. Oncol Lett. 2011;2:319–22. https://doi.org/10.3892/ol.2011.254.
Tocaciu S, Oliver LJ, Lowenthal RM, Peterson GM, Patel R, Shastri M, McGuinness G, Olesen I, Fitton JH. The effect of Undaria pinnatifida fucoidan on the pharmacokinetics of letrozole and tamoxifen in patients with breast cancer. Integr Cancer Ther. 2018;17:99–105. https://doi.org/10.1177/1534735416684014.
Clinical Trials of Oligo Fucoidan. Available online: https://clinicaltrials.gov/ct2/show/ NCT03130829
Takahashi H, Kawaguchi M, Kitamura K, Narumiya S, Kawamura M, Tengan I, Nishimoto S, Hanamure Y, Majima Y, Tsubura S, Teruya K, Shirahata S. An exploratory study on the anti-inflammatory effects of fucoidan in relation to quality of life in advanced cancer patients. Integr Cancer Ther. 2018;17:282–91. https://doi.org/10.1177/1534735417692097.
Tsai HL, Tai CJ, Huang CW, Chang FR, Wang JY. Efficacy of low-molecular-weight fucoidan as a supplemental therapy in metastatic colorectal cancer patients: a double-blind randomized controlled trial. Mar Drugs. 2017;15:122. https://doi.org/10.3390/md15040122.
Myers SP, Mulder AM, Baker DG, Robinson SR, Rolfe MI, Brooks L, Fitton JH. Effects of fucoidan from Fucus vesiculosus in reducing symptoms of osteoarthritis: a randomized placebo-controlled trial. Biol.: Targets Ther. 2016;10:81. 10.2147%2FBTT.S95165
Mori N, Nakasone K, Tomimori K, Ishikawa C. Beneficial effects of fucoidan in patients with chronic hepatitis c virus infection. World J Gastroenterol. 2012;18: 2225–2230.
Chollet L, Saboural P, Chauvierre C, Villemin JN, Letourneur D, Chaubet F. Fucoidans in nanomedicine. Mar Drugs. 2016;14:145. https://doi.org/10.3390/md14080145.
Krylov VB, Kaskova ZM, Vinnitskiy DZ, Ustyuzhanina NE, Grachev AA, Chizhov AO, Nifantiev NE. Acid-promoted synthesis of per-O-sulfated fucooligosaccharides related to fucoidan fragments. Carbohydr Res. 2011;346:540–50. https://doi.org/10.1016/j.carres.2011.01.005.
Acknowledgements
The authors would like to acknowledge the Department of Chemistry, Gujarat University, Ahmedabad, Gujarat, India, for supporting this work.
Author information
Authors and Affiliations
Contributions
Archana George: Resources, data collection, writing—original draft. Pranav S Shrivastav: Conceptualization, supervision, writing—critical reviewing and editing.
Corresponding author
Ethics declarations
Ethics approval and consent to participate
Not applicable.
Consent for publication
Yes.
Competing interests
The authors declare no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
George, A., Shrivastav, P.S. Fucoidan, a brown seaweed polysaccharide in nanodrug delivery. Drug Deliv. and Transl. Res. 13, 2427–2446 (2023). https://doi.org/10.1007/s13346-023-01329-4
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13346-023-01329-4