Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A dual branch network combining detail information and color feature for remote sensing image dehazing

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

Remote sensing images are often affected by haze, resulting in problems such as blurriness, loss of details, and color casts. To effectively remove haze and obtain high-quality remote sensing image, a dual branch network, named DICFNet, that effectively combines detail information and color features is proposed. Specifically, a detail information learning branch is designed firstly, which uses the detail feature residual extraction module (DFREM) to capture the detail features and promote feature learning. Secondly, to learn comprehensive color features, a color feature learning branch is designed. It converts the RGB color space into the Lab color space that is very similar to human visual perception, and then puts the color feature extraction module (CFEM) into use to learn brightness and saturation features. Finally, a learnable fusion module is adopted to obtain the optimal fusion scheme for the previous two branches, enhancing the ability of the model to produce clear remote sensing images. A wealth of experimental evidence indicates that the proposed DICFNet outperforms comparison methods in both visual quality and quantitative evaluation while maintaining a lower memory footprint and requiring fewer computational resources. In addition, detailed ablation experiments demonstrate the effectiveness of the core components of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

All data can be requested from the corresponding author.

References

  1. Xiang H, Tian L (2011) Development of a low-cost agricultural remote sensing system based on an autonomous unmanned aerial vehicle (UAV). Biosyst Eng 108:174–190. https://doi.org/10.1016/j.biosystemseng.2010.11.010

    Article  Google Scholar 

  2. Peyghambari S, Zhang Y (2021) Hyperspectral remote sensing in lithological mapping, mineral exploration, and environmental geology: an updated review. J Appl Remote Sens 15:031501. https://doi.org/10.1117/1.JRS.15.031501

    Article  Google Scholar 

  3. Melillos G, Themistocleous K, Papadavid G, Agapiou A, Prodromou M, Michaelides S, Hadjimitsis DG (2016) Integrated use of field spectroscopy and satellite remote sensing for defence and security applications in Cyprus. In: RSCy2016. 9688F, pp 127–135. https://doi.org/10.1117/12.2241207

  4. Zheng Y, Su J, Zhang S, Tao M, Wang L (2022) Dehaze-AGGAN: unpaired remote sensing image dehazing using enhanced attention-guide generative adversarial networks. IEEE Trans Geosci Remote Sens 60:1–13. https://doi.org/10.1109/TGRS.2022.3204890

    Article  Google Scholar 

  5. Mehta A, Sinha H, Mandal M, Narang P (2021) Domain-aware unsupervised hyperspectral reconstruction for aerial image dehazing. In: WACV, pp 413–422

  6. Chen Z, Li Q, Feng H, Xu Z, Chen Y (2022) Nonuniformly dehaze network for visible remote sensing images. In: CVPR, pp 447–456

  7. Wang J, Li W, Wang Y, Tao R, Du Q (2023) Representation-enhanced status replay network for multisource remote-sensing image classification. IEEE Trans Neural Netw Learn Syst. https://doi.org/10.1109/TNNLS.2023.3286422

    Article  Google Scholar 

  8. Liu Y, Xiong Z, Yuan Y, Wang Q (2023) Distilling knowledge from super-resolution for efficient remote sensing salient object detection. IEEE Trans Geosci Remote Sens 61:1–16. https://doi.org/10.1109/TGRS.2023.3267271

    Article  Google Scholar 

  9. Sun X, Wang P, Yan Z, Xu F, Wang R, Diao W, Chen J, Li J, Feng Y, Xu T, Weinmann M, Hinz F, Wang C, Fu K (2022) FAIR1M: a benchmark dataset for fine-grained object recognition in high-resolution remote sensing imagery. ISPRS-J Photogramm Remote Sens 184:116–130. https://doi.org/10.1016/j.isprsjprs.2021.12.004

    Article  Google Scholar 

  10. Liu Y, Li Q, Yuan Y, Du Q, Wang Q (2022) ABNet: adaptive balanced network for multiscale object detection in remote sensing imagery. IEEE Trans Geosci Remote Sens 60:1–14. https://doi.org/10.1109/TGRS.2021.3133956

    Article  Google Scholar 

  11. Liu Y, Xiong Z, Yuan Y, Wang Q (2023) Transcending pixels: boosting saliency detection via scene understanding from aerial imagery. IEEE Trans Geosci Remote Sens 61:1–16. https://doi.org/10.1109/TGRS.2023.3298661

    Article  Google Scholar 

  12. Narasimhan SG, Nayar SK (2000) Chromatic framework for vision in bad weather. In: CVPR, pp 1598–1605

  13. Narasimhan SG, Nayar SK (2002) Vision and the atmosphere. Int J Comput Vis 48:233–254. https://doi.org/10.1023/A:1016328200723

    Article  Google Scholar 

  14. He K, Sun J, Tang X (2021) Single image haze removal using dark channel prior. IEEE Trans Pattern Anal Mach Intell 33:2341–2353. https://doi.org/10.1109/TPAMI.2010.168

    Article  Google Scholar 

  15. Berman D, Avidan S (2016) Non-local image dehazing. In: CVPR, pp 1674-1682

  16. Xiao C, Gan J (2012) Fast image dehazing using guided joint bilateral filter. Vis Comput 28:713–721. https://doi.org/10.1007/s00371-012-0679-y

    Article  Google Scholar 

  17. Zhu Q, Mai J, Shao L (2015) A fast single image haze removal algorithm using color attenuation prior. IEEE Trans Image Process 24:3522–3533. https://doi.org/10.1109/TIP.2015.2446191

    Article  MathSciNet  Google Scholar 

  18. Liu J, Li S, Liu H, Dian R, Wei X (2023) A lightweight pixel-level unified image fusion network. IEEE Trans Neural Netw Learn Syst. https://doi.org/10.1109/TNNLS.2023.3311820

    Article  Google Scholar 

  19. Jain J, Li J, Chiu MT, Hassani A, Orlov N, Shi H (2023) Oneformer: one transformer to rule universal image segmentation. In: CVPR, pp 2989-2998

  20. Zhou J, Li B, Zhang D, Yuan J, Zhang W, Cai Z, Shi J (2023) UGIF-Net: an efficient fully guided information flow network for underwater image enhancement. IEEE Trans Geosci Remote Sens 61:1–17. https://doi.org/10.1109/TGRS.2023.3293912

    Article  Google Scholar 

  21. Liu J, Li S, Dian R, Song Z (2024) DT-F Transformer: dual transpose fusion transformer for polarization image fusion. Inf Fusion 106:102274. https://doi.org/10.1016/j.inffus.2024.102274

    Article  Google Scholar 

  22. Cai B, Xu X, Jia K, Qing C, Tao D (2016) Dehazenet: an end-to-end system for single image haze removal. IEEE Trans Image Process 25:5187–5198. https://doi.org/10.1109/TIP.2016.2598681

    Article  MathSciNet  Google Scholar 

  23. Ren W, Liu S, Zhang H, Pan J, Cao X, Yang MH (2016) Single image dehazing via multi-scale convolutional neural networks. In: ECCV, pp 154–169. https://doi.org/10.1007/978-3-319-46475-6_10

  24. Deng Z, Zhu L, Hu X, Fu CW, Xu X, Zhang Q, Qin J, Heng PA (2019) Deep multi-model fusion for single-image dehazing. In: ICCV, pp 2453-2462

  25. Zheng L, Li Y, Zhang K, Luo W (2022) T-net: deep stacked scale-iteration network for image dehazing. IEEE Trans Multimed 25:6794–6807. https://doi.org/10.1109/TMM.2022.3214780

    Article  Google Scholar 

  26. Zheng C, Zhang J, Hwang JN, Huang B (2022) Double-branch dehazing network based on self-calibrated attentional convolution. Knowl-Based Syst 240:108148. https://doi.org/10.1016/j.knosys.2022.108148

    Article  Google Scholar 

  27. Yi Q, Li J, Fang F, Jiang A, Zhang G (2021) Efficient and accurate multi-scale topological network for single image dehazing. IEEE Trans Multimed 24:3114–3128. https://doi.org/10.1109/TMM.2021.3093724

    Article  Google Scholar 

  28. Zhou Y, Chen Z, Li P, Song H, Chen CP, Sheng B (2023) FSAD-Net: feedback spatial attention dehazing network. IEEE Trans Neural Netw Learn Syst 34:7719–7733. https://doi.org/10.1109/TNNLS.2022.3146004

    Article  Google Scholar 

  29. Su Z, Liu W, Yu Z, Hu D, Liao Q, Tian Q, Pietikäinen M, Liu L (2021) Pixel difference networks for efficient edge detection. In: ICCV, pp 5117–5127

  30. Yu Z, Zhao C, Wang Z, Qin Y, Su Z, Li X, Zhou F, Zhao G (2020) Searching central difference convolutional networks for face anti-spoofing. In: CVPR, pp 5295–5305

  31. Li C, Anwar S, Hou J, Cong R, Guo C, Ren W (2021) Underwater image enhancement via medium transmission-guided multi-color space embedding. IEEE Trans Image Process 30:4985–5000. https://doi.org/10.1109/TIP.2021.3076367

    Article  Google Scholar 

  32. Yang H, Nan G, Lin M, Chao F, Shen Y, Li K, Ji R (2022) LAB-Net: lAB color-space oriented lightweight network for shadow removal. arXiv:2208.13039

  33. Suny AH, Mithila NH (2023) A shadow detection and removal from a single image using LAB color space. Int J Comput Sci Issues 10:270

    Google Scholar 

  34. Chung YS, Kim NH (2023) Saturation-based airlight color restoration of hazy images. Appl Sci 13:12186. https://doi.org/10.3390/app132212186

    Article  Google Scholar 

  35. Liu J, Dian R, Li S, Liu H (2023) SGFusion: a saliency guided deep-learning framework for pixel-level image fusion. Inf Fusion. 91:205–214. https://doi.org/10.1016/j.inffus.2022.09.030

    Article  Google Scholar 

  36. Memon S, Arain RH, Mallah GA (2023) Amsff-net: attention-based multi-stream feature fusion network for single image dehazing. J Vis Commun Image Represent 90:103748. https://doi.org/10.1016/j.jvcir.2022.103748

    Article  Google Scholar 

  37. Gao T, Liu Y, Cheng P, Chen T, Liu L (2023) Multi-scale density-aware network for single image dehazing. IEEE Signal Process Lett 30:1117–1121. https://doi.org/10.1109/LSP.2023.3304540

    Article  Google Scholar 

  38. Su YZ, He C, Cui ZG, Li AH, Wang N (2023) Physical model and image translation fused network for single-image dehazing. Pattern Recognit 142:109700. https://doi.org/10.1016/j.patcog.2023.109700

    Article  Google Scholar 

  39. Hu G, Tan A, He L, Shen H, Chen H, Wang C, Du H (2023) Pyramid feature boosted network for single image dehazing. Int J Mach Learn Cyber 14:2099–2110. https://doi.org/10.1007/s13042-022-01748-8

    Article  Google Scholar 

  40. Qin X, Wang Z, Bai Y, Xie X, Jia H (2020) FFA-Net: feature fusion attention network for single image dehazing. In: AAAI, pp 11908–11915. https://doi.org/10.1609/aaai.v34i07.6865

  41. Woo S, Park J, Lee JY, Kweon IS (2018) Cbam: convolutional block attention module. In: ECCV, pp 3–19

  42. Chen Z, He Z, Lu ZM (2024) DEA-Net: single image dehazing based on detail-enhanced convolution and content-guided attention. IEEE Trans Image Process 33:1002–1015. https://doi.org/10.1109/TIP.2024.3354108

    Article  Google Scholar 

  43. Zhong Y, Liu J, Huang X, Liu J, Fan Y, Wu M (2024) CDCNet: a fast and lightweight dehazing network with color distortion correction. In: ICASSP, pp 3020–3024. https://doi.org/10.1109/ICASSP48485.2024.10447111

  44. Lin D, Xu G, Wang X, Wang Y, Sun X, Fu K (2019) A remote sensing image dataset for cloud removal. arXiv:1901.00600

  45. Tanner F, Colder B, Pullen C, Heagy D, Eppolito M, Carlan V, Oertel C, Sallee P (2009) Overhead imagery research data set? An annotated data library & tools to aid in the development of computer vision algorithms. In: AIPR, pp 1–8. https://doi.org/10.1109/AIPR.2009.5466304

  46. Song T, Fan S, Li P, Jin J, Jin G, Fan L (2023) Learning an effective transformer for remote sensing satellite image dehazing. IEEE Geosci Remote Sens Lett 20:1–5. https://doi.org/10.1109/LGRS.2023.3319832

    Article  Google Scholar 

  47. Wu H, Qu Y, Lin S, Zhou J, Qiao R, Zhang Z, Xie Y, Ma L (2021) Contrastive learning for compact single image dehazing. In: CVPR, pp 10551–10560

  48. Kulkarni A, Phutke SS, Vipparthi SK, Murala S (2024) C2AIR: consolidated compact aerial image haze removal. In: WACV, pp 749–758

  49. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13:600–612. https://doi.org/10.1109/TIP.2003.819861

    Article  Google Scholar 

  50. Sun H, Luo Z, Ren D, Du B, Yang WJ, Zhang L (2023) Partial siamese with multiscale bi-codec networks for remote sensing image haze removal. IEEE Trans Geosci Remote Sens 61:4106516. https://doi.org/10.1109/TGRS.2023.3321307

    Article  Google Scholar 

  51. Chi K, Yuan Y, Wang Q (2023) Trinity-Net: gradient-guided Swin transformer-based remote sensing image dehazing and beyond. IEEE Trans Geosci Remote Sens 61:4702914. https://doi.org/10.1109/TGRS.2023.3285228

    Article  Google Scholar 

  52. Wang Z, Cun X, Bao J, Zhou W, Liu J, Li H (2022) Uformer: a general u-shaped transformer for image restoration. In: CVPR, pp 17683–17693

  53. Zamir SW, Arora A, Khan S, Hayat M, Khan FS, Yang MH (2022) Restormer: efficient transformer for high-resolution image restoration. In: CVPR, pp 5728–5739

  54. Kulkarni A, Murala S (2023) Aerial image dehazing with attentive deformable transformers. In: WACV, pp 6305–6314

  55. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: CVPR, pp 770–778

  56. Jiang N, Hu K, Zhang T, Chen W, Xu Y, Zhao T (2023) Deep hybrid model for single image dehazing and detail refinement. Pattern Recognit 136:109227. https://doi.org/10.1016/j.patcog.2022.109227

    Article  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This research is funded by the Anhui Province Higher Education Natural Science Research Project (Nos. 2023AH053088, 2023AH051609), the National Natural Science Foundation of China (No. 62066039), the Natural Science Foundation of Qinghai Province of China (No. 2022-ZJ-925), the Technology Innovation Platform Project of Chuzhou Polytechnic (No. YJP-2023-02), the Anhui Provincial Quality Engineering Project for Higher Education Institutions (Nos. 2022jyxm1147, 2022jnds043), the Chuzhou Polytechnic Campus Research Project (No. ZKZ-2022-02).

Author information

Authors and Affiliations

Authors

Contributions

All authors have made contributions to this work. Individual contributions are as follows: M. M. contributed to conceptualization, methodology, software, writing-original draft preparation, and funding acquisition; H. H., K. H., S. W. writing-review and editing, and funding acquisition. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Heming Huang.

Ethics declarations

Conflict of interest

The authors declare no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miao, M., Huang, H., Huang, K. et al. A dual branch network combining detail information and color feature for remote sensing image dehazing. Int. J. Mach. Learn. & Cyber. (2024). https://doi.org/10.1007/s13042-024-02388-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13042-024-02388-w

Keywords

Navigation