Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Pivot selection for metric-space indexing

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

Metric-space indexing abstracts various data types into universal metric spaces and prunes data only exploiting the triangle inequality of the distance function in metric spaces. Since there is no coordinates in metric space, one usually first pick a number of reference points, pivots, and consider the distances from a data point to the pivots as its coordinates. In this paper, we first survey and discuss the state of the art of pivot selection for metric-space indexing from the perspectives of importance, objective function, number of pivots, and selection algorithm. Further, we propose a new objective function, a new method to determine the number of pivots and an incremental sampling framework for pivot selection. Experimental results show that the new objective function is more consistent with the query performance, the new method to determine the number of pivots is more efficient, and the incremental sampling framework leads to better query performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Mao R, Honglong X, Wenbo W, Li J, Li Y, Minhua L (2015) Overcoming the challenge of variety: big data abstraction, the next evolution of data management for AAL communication systems. IEEE Commun Mag 53(1):42–47

    Article  Google Scholar 

  2. Roman S (1992) Advanced linear. Algebra graduate texts in mathematics, vol 135. Springer, Berlin

    Book  Google Scholar 

  3. Chavez E, Navarro G, Baeza-Yates R, Marroqu J (2001) Searching in metric spaces. ACM Comput Surv 33(3):273–321

    Article  Google Scholar 

  4. Zezula P, Amato G, Dohnal V, Batko M (2006) Similarity search: the metric space approach. Springer, Heidelberg

    MATH  Google Scholar 

  5. Samet H (2006) Foundations of multidimensional and metric data structures. Morgan-Kaufmann, San Francisco

    MATH  Google Scholar 

  6. Hjaltason G, Samet H (2003) Index-driven similarity search in metric spaces. ACM Trans Database Syst (TODS) 28(4):517–580

    Article  Google Scholar 

  7. Mao R, Miranker W, Miranker DP (2012) Pivot Selection: dimension reduction for distance-based indexing. J Discret Algorithm Elsevier 13:32–46

    Article  MathSciNet  MATH  Google Scholar 

  8. Uhlmann JK (1991) Satisfying general proximity/similarity queries with metric trees. Inf Proc Lett 40(4):175–179

    Article  MATH  Google Scholar 

  9. Yianilos PN (1993) Data structures and algorithms for nearest neighbor search in general metric spaces. In the fourth annual ACM-SIAM symposium on discrete algorithms. Society for Industrial and Applied Mathematics

  10. Bozkaya T, Ozsoyoglu M (1999) Indexing large metric spaces for similarity search queries. ACM Trans Database Syst 24(3):361–404

    Article  Google Scholar 

  11. Bustos B, Navarro G, Chavez E (2003) Pivot selection techniques for proximity searching in metric spaces. Pattern Recogn Lett 24(14):2357–2366

    Article  MATH  Google Scholar 

  12. Clarkson KL (2006) Nearest-neighbor searching and metric space dimensions, In: Nearest-neighbor methods for learning and vision: theory and practice, MIT Press, pp. 15–59

  13. Kegl B (2003) Intrinsic dimension estimation using packing numbers. Adv Neural Inf Proc Syst 15:681–688

    Google Scholar 

  14. Camastra F (2003) Data dimensionality estimation methods: a survey. Pattern Recogn 36(12):2945–2954

    Article  MATH  Google Scholar 

  15. Mao R, Xu W, Ramakrishnan S, Nuckolls G, Miranker DP (2005) On optimizing distance-based similarity search for biological databases. In the 2005 IEEE computational systems bioinformatics conference (CSB 2005)

  16. Traina C, Jr, Traina A, Faloutsos C (1999) Distance exponent: a new concept for selectivity estimation in metric trees, Technical Report CMU-CS-99-110, Computer Science Department, Carnegie Mellon University

  17. Beyer KS, Goldstein J, Ramakrishnan R, Shaft U (1999) When is “nearest neighbor” meaningful? The 7th international conference on database theory. Springer, Berlin

  18. Shaft U, Ramakrishnan R (2005) When is nearest neighbors indexable? In the tenth international conference on database theory (ICDT 2005). Springer, Berlin

  19. Grassberger P, Procaccia I (1983) Measuring the strangeness of strange attractors. Physica 9D(1–2):189–208

    MathSciNet  MATH  Google Scholar 

  20. Roweis S (1997) EM Algorithms for PCA and SPCA. Neural Inf Proc Syst 10:626–632

    Google Scholar 

  21. Brin S (1995) Near neighbor search in large metric spaces. In the 21th international conference on very large data bases (VLDB’95). 1995. Zurich, Switzerland, Morgan Kaufmann Publishers Inc

  22. Ciaccia P, Patella M (1997) Bulk loading the M-tree. In 9th Australasian database conference (ADO’98)

  23. Navarro G (1999) Searching in metric spaces by spatial approximation. In: Proceedings of the string processing and information retrieval symposium and international workshop on groupware. IEEE Computer Society

  24. Gonzalez TF (1985) Clustering to minimize the maximum intercluster distance. Theoret Comput Sci 38:293–306

    Article  MathSciNet  MATH  Google Scholar 

  25. Hochbaum DS, David B (1985) Shmoys, A best possible heuristic for the k-center problem. Math Op Res 10(2):180–184

    Article  MATH  Google Scholar 

  26. The UMAD project: https://github.com/ruimao/UMAD

  27. Needleman SB, Wunsch CD (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 48:443–453

    Article  Google Scholar 

  28. Xu W, Miranker DP (2004) A metric model of amino acid substitution. Bioinformatics 20(8):1214–1221

    Article  Google Scholar 

  29. Navarro G (2009) Analyzing metric space indexes: what for? In the proceedings of the second international conference on similarity search and applications (SISAP2009), pp. 3–10

  30. Venkateswaran J, Kahveci T, Jermaine CM, Lachwani D (2008) Reference-based indexing for metric spaces with costly distance measures. VLDB J 17(5):1231–1251 Springer

    Article  Google Scholar 

  31. Celik C (2002) Priority vantage points structures for similarity queries in metric spaces. In: Proceedings of EurAsia-ICT 2002: information and communication technology, ser. LNCS(2510). pp. 256–263. Springer

  32. Celik C (2008) Effective use of space for pivot-based metric indexing structures. In: Proceedings of international workshop on similarity search and applications (SISAP’08). IEEE Press, pp. 402–409

  33. Micó ML, Oncina J, Vidal E (1994) A new version of the nearest-neighbour approximating and eliminating search algorithm (AESA) with linear preprocessing time and memory requirements. Pattern Recognition Letters 5(1):9–17

    Article  Google Scholar 

  34. Vleugels J, Veltkamp RC (2002) Efficient image retrieval through vantage objects. Pattern Recogn. 35(1):69–80 Elsevier

    Article  MATH  Google Scholar 

  35. Van Leuken RH, Veltkamp RC (2011) Selecting vantage objects for similarity indexing. ACM Trans Multim Comput Commun Appl 7(3):1–18

    Article  Google Scholar 

  36. Shapiro M (1977) The choice of reference points in best-match file searching. Commun ACM 20(5):339–343

    Article  Google Scholar 

  37. Ramasubramanian V, Paliwal KK (1992) An efficient approximation-elimination algorithm for fast nearest-neighbor search based on a spherical distance coordinate formulation. Pattern Recogn Lett 13(7):471–480

    Article  Google Scholar 

  38. Traina C Jr, Filho RF, Traina AJ, Vieira MR, Faloutsos C (2007) The Omni-family of all-purpose access methods: a simple and effective way to make similarity search more efficient. VLDB J 16(4):483–505

    Article  Google Scholar 

  39. Mao R, Xu W, Singh N, Miranker DP (2005) An assessment of a metric space database index to support sequence homology. Int J Artif Intell Tools 14(5):867–885

    Article  Google Scholar 

  40. Hennig C, Latecki LJ (2003) The choice of vantage objects for image retrieval. Pattern Recognit 36(9):2187–2196

    Article  MATH  Google Scholar 

  41. Brisaboa NR, Farina A, Pedreira O, Reyes N (2006) Similarity search using sparse pivots for efficient multimedia information retrieval. In Proceedings of the 8th IEEE international symposium on multimedia (ISM’06). IEEE Press, pp. 881–888

  42. Bustos B, Pedreira O, Brisaboa NR (2008) A dynamic pivot selection technique for similarity search in metric spaces. In Proceedings of 1st international workshop on similarity search and applications (SISAP’08). IEEE Press, pp. 105–112

  43. Berman A, Shapiro LG (1998) Selecting good keys for triangle-inequality-based pruning algorithms. In: Proceedings of the 1998 international workshop on content-based access of image and video databases (CAIVD ‘98), pp. 12–19,1998, Bombay, India

Download references

Acknowledgments

This work is partially supported by the following Grants: China 863: 2015AA015305; NSF-China: 61170076, U1301252, 61471243; Guangdong Key Laboratory Project: 2012A061400024; NSF-Shenzhen: JCYJ20140418095735561, JCYJ20150731160834611; Shenzhen-Hong Kong Innovation circle Project: SGLH20131010163759789. Dr. Minhua Lu is the corresponding author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minhua Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, R., Zhang, P., Li, X. et al. Pivot selection for metric-space indexing. Int. J. Mach. Learn. & Cyber. 7, 311–323 (2016). https://doi.org/10.1007/s13042-016-0504-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-016-0504-4

Keywords

Navigation