Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Dynamic Analysis of a Model on Tumor-Immune System with Regulation of PD-1/PD-L1 and Stimulation Delay of Tumor Antigen

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

We propose and investigate a mathematical model on interaction between tumor and the immune system, where the regulation of PD-1/PD-L1 and the stimulation delay of tumor antigen for the immune system are considered. Though delay will not change the structure of equilibria, the global dynamics in the case without delay is simple compared with that in the case with delay. Theoretic analysis and numerical simulations show that the incorporation of delay leads to complex dynamics, including the appearance of oscillating solutions, periodic solutions from Hopf bifurcation, and homoclinic orbits, etc. The effect of the immunotherapy including anti-PD-1/PD-L1 inhibitor and tumor vaccine is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of Data and Materials

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Ali, O.A., Lewin, S.A., Dranoff, G., Mooney, D.J.: Vaccines combined with immune checkpoint antibodies promote cytotoxic T-cell activity and tumor eradication. Cancer Immunol. Res. 4(2), 95–100 (2016). https://doi.org/10.1158/2326-6066.CIR-14-0126

    Article  Google Scholar 

  2. Alsaab, H.O., Sau, S., Alzhrani, R., et al.: PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: mechanism, combinations, and clinical outcome. Front. Pharmacol. 8, 516 (2017). https://doi.org/10.3389/fphar.2017.00561. eCollection 2017

  3. Brahmer, J.R., Tykodi, S.S., Chow, L.Q.M., et al.: Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med. 366(26), 2455–2465 (2012). https://doi.org/10.1056/NEJMoa1200694

    Article  Google Scholar 

  4. Burotto, M., Singh, N., Heery, C.R., et al.: Exploiting synergy: immune-based combinations in the treatment of prostate cancer. Front. Oncol. 4(1), 1–10 (2014). https://doi.org/10.3389/fonc.2014.00351

    Article  Google Scholar 

  5. Chaplain, M., Kuznetsov, V.A., James, Z.H., Stepanova, L.A.: Spatio-temporal dynamics of the immune system response to cancer. In: Mary Ann, H., Gieri, S., Glenn, F.W. (eds.) Mathematical Models in Medical and Health Science, pp. 1–20. Vanderbilt University Press, Nashville, TN (1998)

    Google Scholar 

  6. Eftimie, R., Bramson, J.L., Earn, D.J.D.: Interactions between the immune system and cancer: a brief review of non-spatial mathematical models. Bull. Math. Biol. 73(1), 2–23 (2011). https://doi.org/10.1007/s11538-010-9526-3

    Article  MathSciNet  MATH  Google Scholar 

  7. Griffiths, J.I., Wallet, P., Pflieger, L.T., et al.: Circulating immune cell phenotype dynamics reflect the strength of tumor-immune cell interactions in patients during immunotherapy. Proc. Natl. Acad. Sci. USA 117(27), 16072–16082 (2020). https://doi.org/10.1073/pnas.1918937117

    Article  Google Scholar 

  8. Gukenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, Berlin (1990)

    Google Scholar 

  9. Hamid, O., Robert, C., Daud, A., et al.: Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N. Engl. J. Med. 369(2), 134–144 (2013). https://doi.org/10.1056/NEJMoa1305133

    Article  Google Scholar 

  10. He, J., Hu, Y., Hu, M., Li, B.: Development of PD-1/PD-L1 pathway in tumor immune microenvironment and treatment for non-small cell lung cancer. Sci. Rep. 5, 13110 (2015). https://doi.org/10.1038/srep13110

    Article  Google Scholar 

  11. Hirayama, M., Nishimur, Y.: The present status and future prospects of peptide-based cancer vaccines. Int. Immunol. 28(7), 319–328 (2016). https://doi.org/10.1093/intimm/dxw027

    Article  Google Scholar 

  12. Hu, X., Ke, G., Jang, S.R.-J.: Modeling pancreatic cancer dyamics with immunotherapy. Bull. Math. Biol. 81(6), 1885–1915 (2019). https://doi.org/10.1007/s11538-019-00591-3

    Article  MathSciNet  MATH  Google Scholar 

  13. Ishizuka, J.J., Manguso, R.T., Cheruiyot, C.K., et al.: Loss of ADAR1 in tumours overcomes resistance to immune checkpoint blockade. Nature 565(7737), 43–48 (2019). https://doi.org/10.1038/s41586-018-0768-9

    Article  Google Scholar 

  14. Johansen, P., Storni, T., Rettig, L., et al.: Antigen kinetics determines immune reactivity. Proc. Natl. Acad. Sci. USA 105(13), 5189–5194 (2008). https://doi.org/10.1073/pnas.0706296105

    Article  Google Scholar 

  15. Joshi, B., Wang, X., Banerjee, S., et al.: On immunotherapies and cancer vaccination protocols: A mathematical modelling approach. J. Theoret. Biol. 259(4), 820–827 (2009). https://doi.org/10.1016/j.jtbi.2009.05.001

    Article  MathSciNet  MATH  Google Scholar 

  16. Juneja, V.R., McGuire, K.A., Manguso, R.T., et al.: PD-L1 on tumor cells is sufficient for immune evasion in immunogenic tumors and inhibits CD8 T cell cytotoxicity. J. Exp. Med. 214(4), 895–904 (2017). https://doi.org/10.1084/jem.20160801

    Article  Google Scholar 

  17. Khajanchi, S., Banerjee, S.: Stability and bifurcation analysis of delay induced tumor immune interaction model. Appl. Math. Comput. 248, 652–671 (2014). 1.016/j.amc.2014.10.009

  18. Khajanchi, S., Nieto, J.J.: Mathematical modeling of tumor-immune competitive system, considering the role of time delay. Appl. Math. Comput. 340, 180–205 (2019). https://doi.org/10.1016/j.amc.2018.08.018

    Article  MathSciNet  MATH  Google Scholar 

  19. Kim, R., Woods, T., Radunskaya, A.: Mathematical modeling of tumor immune interactions: A closer look at the role of a PD-L1 inhibitor in cancer immunotherapy. Spora J. Biomath. 4(1), 25–41 (2018). https://doi.org/10.30707/SPORA4

    Article  Google Scholar 

  20. Kirschner, D., Panetta, J.C.: Modeling immunotherapy of the tumor-immune interaction. J. Math. Biol. 37(3), 235–252 (1998). https://doi.org/10.1007/s002850050127

    Article  MATH  Google Scholar 

  21. Kleponis, J., Skelton, R., Zheng, L.: Fueling the engine and releasing the break: combinational therapy of cancer vaccines and immune checkpoint inhibitors. Cancer Biol. Med. 12(3), 201–208 (2015). https://doi.org/10.7497/j.issn.2095-3941.2015.0046

    Article  Google Scholar 

  22. Kuang, Y.: Delay Differential Equations with Applications in Population Dynamics. Academic Press, Boston (1993)

    MATH  Google Scholar 

  23. Kuznetsov, V.A., Makalkin, I.A., Taylor, M.A., Perelon, A.S.: Nonlinear dynamics of immunogenic tumors: Parameter estimation and global bifurcation analysis. Bull. Math. Biol. 56(2), 295–321 (1994). https://doi.org/10.1016/S0092-8240(05)80260-5

    Article  MATH  Google Scholar 

  24. Keshavarz-Fathi, M., Rezaei, N.: Vaccines for Cancer Immunotherapy. Academic Press (2018). https://doi.org/10.1016/C2017-0-01055-8

  25. Lai, X. Friedman, A.: Combination therapy of cancer with cancer vaccine and immune checkpoint inhibitors: A mathematical model. PLoS One, 12(5), e0178479 (2017). https://doi.org/10.1371/journal.pone.0178479. eCollection 2017

  26. Li, J., Xie, X., Chen, Y., Zhang, D.: Complex dynamics of a tumor-immune system with antigenicity. Appl. Math. Comput. 400 paper No. 126052, 2 pp. (2021). https://doi.org/10.1016/j.amc.2021.126052

  27. Maute, R.L., Gordon, S.R., Mayer, A.T., et al.: Engineering high-affinity PD-1 variants for optimized immunotherapy and immuno-PET imaging. Proc. Natl. Acad. Sci. USA 112(47), E6505–E6514 (2015). https://doi.org/10.1073/pnas.1519623112

    Article  Google Scholar 

  28. Mortezaee, K., Narmani, A., Salehi, M., et al.: Synergic effects of nanoparticles-mediated hyperthermia in radiotherapy/chemotherapy of cancer. Life Sci. 269, 119020 (2021). https://doi.org/10.1016/j.lfs.2021.119020

    Article  Google Scholar 

  29. Matzavinos, A., Chaplain, M.A.J., Kuznetsov, V.A.: Mathematical modelling of the spatio-temporal response of cytotoxic T-lymphocytes to a solid tumour. Math. Med. Biol. 21(1), 1–34 (2004). https://doi.org/10.1093/imammb/21.1.1

    Article  MATH  Google Scholar 

  30. Nikolopoulou, E., Eikenberry, S.E., Gevertz, J.L., Kuang, Y.: Mathematical modeling of an immune checkpoint inhibitor and its synergy with an immunostimulant. Discrete Contin. Dyn. Syst. Ser B 26(4), 2133–2159 (2021). https://doi.org/10.3934/dcdsb.2020138

    Article  MathSciNet  MATH  Google Scholar 

  31. Nikolopoulou, E., Johnson, L.R., Harris, D., et al.: Tumour-immune dynamics with an immune checkpoint inhibitor. Lett. Biomath. 5(suppl. 1), S137–S159 (2018). https://doi.org/10.1080/23737867.2018.1440978

    Article  MathSciNet  Google Scholar 

  32. Nishida, N., Kudo, M.: Immunological microenvironment of hepatocellular carcinoma and its clinical implication. Oncology 92(suppl. 1), 40–49 (2017). https://doi.org/10.1159/000451015

    Article  Google Scholar 

  33. Pang, L., Liu, S., Zhang, X., Tia, T.: Mathematical modeling and dynamic analysis of anti-tumor immune response. J. Appl. Math. Comput. 62(1–2), 473–488 (2020). https://doi.org/10.1007/s12190-019-01292-9

    Article  MathSciNet  MATH  Google Scholar 

  34. Peng, W., Lizée, G., Hwu, P.: Blockade of the PD-1 pathway enhances the efficacy of adoptive cell therapy against cancer. Oncoimmunology 2(2), e22691 (2013). https://doi.org/10.4161/onci.22691

    Article  Google Scholar 

  35. Prieto, J., Melero, I., Sangro, B.: Immunological landscape and immunotherapy of hepatocellular carcinoma. Nat. Rev. Gastroenterol. Hepatol. 12(12), 681–700 (2015). https://doi.org/10.1038/nrgastro.2015.173

    Article  Google Scholar 

  36. de Pillis, L.G., Radunskaya, A.E., Wiseman, C.L.: A validated mathematical model of cell-mediated immune response to tumor growth. Cancer Res. 65(17), 7950–7958 (2005). https://doi.org/10.1158/0008-5472.CAN-05-0564

    Article  Google Scholar 

  37. de Pillis, L.G., Gu, W., Radunskaya, A.E.: Mixed immunotherapy and chemotherapy of tumors: modeling, applications and biological interpretations. J. Theoret. Biol. 238(4), 841–862 (2006). https://doi.org/10.1016/j.jtbi.2005.06.037

    Article  MathSciNet  MATH  Google Scholar 

  38. Ruan, S.: Nonlinear dynamics in tumor-immune system interaction models with delays. Discrete Contin. Dyn. Syst. Ser. B 26(1), 541–602 (2021). https://doi.org/10.3934/dcdsb.2020282

    Article  MathSciNet  MATH  Google Scholar 

  39. Sahin, U., Türeci, Ö.: Personalized vaccines for cancer immunotherapy. Science 359(6382), 1355–1360 (2018). https://doi.org/10.1126/science.aar7112

    Article  Google Scholar 

  40. Schreiber, R.D., Old, L.J., Smyth, M.J.: Cancer immunoediting: Integrating immunity’s roles in cancer suppression and promotion. Science 331(6024), 1565–1570 (2011). https://doi.org/10.1126/science.1203486

    Article  Google Scholar 

  41. Scott, A.M., Wolchok, J.D., Old, L.J.: Antibody therapy of cancer. Nat. Rev. Cancer 12(4), 278–287 (2012). https://doi.org/10.1038/nrc3236

    Article  Google Scholar 

  42. Serre, R., Benzekry, S., Padovani, L., et al.: Mathematical modeling of cancer immunotherapy and its synergy with radiotherapy. Cancer Res. 76(17), 4931–4940 (2016). https://doi.org/10.1158/0008-5472.CAN-15-3567

    Article  Google Scholar 

  43. Shi, L., Chen, S., Yang, L., Li, Y.: The role of PD-1 and PD-L1 in T-cell immune suppression in patients with hematological malignancies. J. Hematol. Oncol. 6, Art. No. 74 (2013)

  44. Shi, S., Huang, J., Kuang, Y.: Global dynamics in a tumor-immune model with an immune checkpoint inhibitor. Discrete Contin. Dyn. Syst. Ser. B 26(2), 1149–1170 (2021). https://doi.org/10.3934/dcdsb.2020157

    Article  MathSciNet  MATH  Google Scholar 

  45. Srinivasan, V.M., Ferguson, S.D., Lee, S., et al.: Tumor vaccines for malignant gliomas. Neurotherapeutics 14(2), 345–357 (2017). https://doi.org/10.1007/s13311-017-0522-2

    Article  Google Scholar 

  46. Tian, H., Shi, G., Wang, Q., et al.: A novel cancer vaccine with the ability to simultaneously produce anti-PD-1 antibody and GM-CSF in cancer cells and enhance Th1-biased antitumor immunity. Signal Transduct. Target. Ther. 1, 16025 (2016). https://doi.org/10.1038/sigtrans.2016.25. eCollection 2016

  47. Topalian, S.L., Hodi, F.S., Brahmer, J.R., et al.: Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 366(26), 2443–2454 (2012). https://doi.org/10.1056/NEJMoa1200690

    Article  Google Scholar 

  48. Wu, H., Fu, X., Zhai, Y., et al.: Development of effective tumor vaccine strategies based on immune response cascade reactions. Adv. Healthcare Mater. 10(13), e2100299 (2021). https://doi.org/10.1002/adhm.202100299

    Article  Google Scholar 

  49. Yan, Y., Kumar, A.B., Finnes, H., et al.: Combining immune checkpoint inhibitors with conventional cancer therapy. Front. Immunol. 9, 1739 (2018). https://doi.org/10.3389/fimmu.2018.01739.eCollection 2018

  50. Zhang, Z., Lu, M., Qin, Y., et al.: Neoantigen: A new breakthrough in tumor immunotherapy. Front. Immunol. 12, 672356 (2021). https://doi.org/10.3389/fimmu.2021.672356

    Article  Google Scholar 

Download references

Funding

This work is supported partially by the National Natural Science Foundation of PR China (Nos. 11971281, 12071268), the Project of Xi’an Medical University (No. 2018GJFY05), and NSERC of Canada (No. RGPIN-2019-05892).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the writing of this paper.

Corresponding author

Correspondence to Yuming Chen.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

High Order Equilibrium of System (4)

1.1 Local Dynamics of System (4) Near \(P_0\)

To investigate the dynamical behavior of system (4) near \(P_0\) when \(\beta _2=1\) and \(c\ne \beta _1\), we let \(u=x-1\) and \(v=y\) to transform (4) into

$$\begin{aligned} \begin{aligned}&u'=-u+(c-\beta _1)v-\beta _1uv, \\&v'=-rv[(u+v)+\beta _0(1+u)v]. \end{aligned} \end{aligned}$$
(14)

Further, let \(u=w+(c-\beta _1)v\). Then (14) becomes

$$\begin{aligned} \begin{aligned}&w'=-w-\beta _1v(w+cv-\beta _1v)\triangleq F(w, v), \\&v'=-rv[(1+\beta _0v)w+(c+\beta _0+1-\beta _1)v +\beta _0(c-\beta _1)v^2] \triangleq G(w, v). \end{aligned} \end{aligned}$$
(15)

By the center manifold theorem [8], we assume that the local center manifold of (15) at the origin is expressed by the function

$$\begin{aligned} w=h(v)=av^2+o(v^2), \end{aligned}$$

where a is a constant to be determined. From \(\frac{dw}{dt}=[2av+o(v)]\frac{dv}{dt}\) and (15) we have

$$\begin{aligned}{}[2av+o(v)]vG(h(v),v)-h(v)-vF(h(v), v)=0. \end{aligned}$$
(16)

By letting the coefficient of \(v^2\) in the left-hand side of (16) be zero, we get \(a=\beta _1(\beta _1-c)\).

Substituting the obtained local center manifold \(w=\beta _1(\beta _1-c)v^2+o(v^2)\) into the second equation of (15) yields

$$\begin{aligned} v'=r(\beta _1-1-c-\beta _0)v^2+r(\beta _1-\beta _0)(c-\beta _1)v^3+o(v^3). \end{aligned}$$
(17)

Then when \(\beta _1\ne 1+c+\beta _0\), \(P_0\) is a saddle-node. Further, according to the first equation of (15), when \(\beta _1< 1+c+\beta _0\), \(P_0\) is attracting in the part corresponding to the node while when \(\beta _1> 1+c+\beta _0\), \(P_0\) is repelling in the part corresponding to the node. When \(\beta _1=1+c+\beta _0\), (17) becomes

$$\begin{aligned} v'=-r(1+\beta _0)(1+c)v^3+o(v^3). \end{aligned}$$

It follows that, when \(\beta _2=1\) and \(\beta _1= 1+c+\beta _0\), \(P_0\) is a locally asymptotically node by the first equation of (15).

In summary, this gives the local stability of \(P_0\) when \(\beta _2=1\) and \(c\ne \beta _1\). \(\square \)

1.2 Local Dynamics of System (4) Near \(P^*_*\)

In order to study the dynamical behavior of (4) near \(P^*_*\), we translate \(P^*_*\) to the origin by the transformation \(u=x-x^*_*\) and \(v=y-y^*_*\). Then (4) becomes

$$\begin{aligned} \begin{aligned}&u'=-(1+\beta _1y^*_*)u+(c-\beta _1x^*_*)v-\beta _1uv, \\&v'=-r(v+y^*_*)[(\beta _0y^*_*+\beta _2^*)u +(1+\beta _0x^*_*)v+\beta _0uv]. \end{aligned} \end{aligned}$$
(18)

It follows from \(\det J(P^*_*)=0\) that \(c-\beta _1x^*_*=-\frac{(1+\beta _1y^*_*)(1+\beta _0x^*_*)}{\beta _0y^*_*+\beta _2^*}\). Then (18) is rewritten as

$$\begin{aligned} \begin{aligned}&u'=-au-\frac{am}{b}v-\beta _1uv, \\&v'=-r(v+y^*_*)(bu+mv+\beta _0uv], \end{aligned} \end{aligned}$$
(19)

where \(a=1+\beta _1y^*_*\), \(b=\beta _0y^*_*+\beta _2^*\), and \(m=1+\beta _0x^*_*\).

Furthermore, using the reversible transformation of variables

$$\begin{aligned} \begin{pmatrix} u\\ v \end{pmatrix} =\begin{pmatrix} a &{} -\frac{am}{b} \\ r y^*_*b &{} a \end{pmatrix} \begin{pmatrix} w\\ z \end{pmatrix}, \end{aligned}$$

that is,

$$\begin{aligned} \begin{pmatrix} w\\ z \end{pmatrix}= \frac{1}{a(a+ry^*_*m)} \begin{pmatrix} a &{} \frac{am}{b} \\ -r y^*_*b &{} a \end{pmatrix} \begin{pmatrix} u\\ v \end{pmatrix}, \end{aligned}$$

we can transform (19) into

$$\begin{aligned}&w'= -(a+ry^*_*m)w+p_{20}w^2+p_{11}wz+p_{02}z^2 +p_{30}w^3+p_{21}w^2z+p_{12}wz^2 +p_{03}z^3, \nonumber \\&z'= q_{20}w^2+q_{11}wz+q_{02}z^2 +q_{30}w^3+q_{21}w^2z+q_{12}wz^2 +q_{03}z^3, \end{aligned}$$
(20)

where

$$\begin{aligned} p_{20}= & {} -\frac{ry^*_*[ab(\beta _1+mr) +rmy^*_*(bmr+a\beta _0)]}{a+ry^*_*m}, \\ p_{11}= & {} -\frac{a [ab(\beta _1+mr)+ry^*_*m(mrb-mr\beta _0y^*_* +a\beta _0-b\beta _1) ]}{b(a+ry^*_*m)}, \\ p_{02}= & {} \frac{a^2m(b\beta _1+mr\beta _0y^*_*)}{(a+ry_*^*m)b^2}, \\ p_{30}= & {} -\frac{mr^3{y^*_*}^2b\beta _0a}{a+ry^*_*m}, \\ p_{21}= & {} -\frac{mr^2y^*_*\beta _0a(2a-ry^*_*m)}{a+ry^*_*m}, \\ p_{12}= & {} -\frac{mr\beta _0a^2(1-2ry^*_*m)}{b(a+ry^*_*m)}, \\ p_{03}= & {} \frac{m^2ra^3\beta _0}{(a+ry^*_*m)b^2}, \\ q_{20}= & {} -\frac{r^2y_*^*b((ay^*_*\beta _0+ba -by^*_*\beta _1+bmry^*_*))}{a+ry^*_*m}, \\ q_{11}= & {} -\frac{r[(b\beta _1-a\beta _0)(rmy^*_*-a)y^*_* -ab(a+rmy^*_*)]}{a+ry^*_*m}, \\ q_{02}= & {} \frac{ray^*_*m(a\beta _0-b\beta _1)}{b(a+ry_*^*m)}, \\ q_{30}= & {} -\frac{r^3{y^*_*}^ 2ab^2\beta _0}{a+ry^*_*m}, \\ q_{21}= & {} -\frac{r^2y^*_*a\beta _0b(2a-ry^*_*m)}{a+ry^*_*m}, \\ q_{12}= & {} -\frac{ra^2\beta _0(a-2ry^*_*m)}{a+ry^*_*m}, \\ q_{03}= & {} \frac{ra^3\beta _0m}{b(a+ry*_*m)}. \end{aligned}$$

Then the local center manifold of (20) at the origin can be obtained similarly as that of (15), which is

$$\begin{aligned} w=\frac{a^2m(b\beta _1+mr\beta _0y^*_*)}{b^2(a+ry^*_**m)^2}z^2+o(z^2). \end{aligned}$$

Substituting it into the second equation of (20) yields

$$\begin{aligned} z'=-\frac{ray^*_*m(\beta _1\beta _2^*-\beta _0)}{b(a+ry^*_*m)}z^2+o(z^2), \end{aligned}$$

where \(b\beta _1-a\beta _0=\beta _1\beta _2^*-\beta _0\) has been used. From \(\varDelta (\frac{\beta _0}{\beta _1}) =\frac{(\beta _1^2+\beta _1-\beta _0\beta _1+c\beta _0)^2}{\beta _1^2}>0\) for \(\beta _1>1+c+\beta _0\), we know that \(\beta _1\beta _2^*-\beta _0\ne 0\) since \(\varDelta (\beta _2^*)=0\). Therefore, \(P^*_*\) is a saddle-node (see, for example, [8]). \(\square \)

Proof of Proposition 1

During the discussion, Maple has been used to do some symbolic calculations.

  1. (i)

    A straightforward calculation gives

    $$\begin{aligned} \beta _2^{**}(1+\beta _0)=\frac{2(1+\beta _0) {[}\sqrt{(1+\beta _0)^2+c^2(c\beta _0+3+3\beta _0)} -(1+\beta _0)]}{c^2(c\beta _0+3+3\beta _0)}>0 \end{aligned}$$

    and

    $$\begin{aligned}&\beta _2^{**}(1+\beta _0)-1 \\= & {} \frac{2(1+\beta _0) \sqrt{(1+\beta _0)^2+c^2(c\beta _0+3+3\beta _0)} -[2(1+\beta _0)^2 +c^2(c\beta _0+3+3\beta _0)]}{c^2(c\beta _0+3+3\beta _0)}. \end{aligned}$$

    Since

    $$\begin{aligned}&[2(1+\beta _0)\sqrt{(1+\beta _0)^2+c^2(c\beta _0 +3+3\beta _0)}]^2 -[2(1+\beta _0)^2 +c^2(c\beta _0+3+3\beta _0)]^2 \\= & {} - c^4(c\beta _0+3+3\beta _0)^2 \\< & {} 0, \end{aligned}$$

    it follows that \(\beta _2^{**}(1+\beta _0)<1\).

  2. (ii)

    On the one hand, we have

    $$\begin{aligned} \beta _2^{**}(1+\beta _0+c)=\frac{2(1+c+\beta _0) \sqrt{\varDelta _0}-Q}{c^2[3(1+c)+\beta _0(3+c)]}, \end{aligned}$$

    where

    $$\begin{aligned} \varDelta _0= & {} (1+c+\beta _0)^2+c^2(c+2)(c+2\beta _0+2), \\ Q= & {} 2(1+c+\beta _0)^2+c^2(1+c)(\beta _0+1). \end{aligned}$$

    Since

    $$\begin{aligned}&4(1+c+\beta _0)^2\varDelta _0^2-Q^2 \\= & {} c^2[3(1+c+\beta _0)+c\beta _0] [4(1+c+\beta _0)^2+c^2(1+\beta _0)-(\beta _0-1)c^3], \end{aligned}$$

    we can easily see that \(\beta _2^{**}(1+\beta _0+c)\) can be positive or negative. On the other hand,

    $$\begin{aligned}&\beta _2^{**}(1+\beta _0+c)-1 \\= & {} \frac{\begin{array}{l} 2 \{(1+c+\beta _0)\sqrt{(c^2+c+1)^2+2 c\beta _0(c+1)^2+2c^2(c+1)+\beta _0(\beta _0+2)} \\ - (1+c+\beta _0)^2-c^2[2(c+1)+\beta _0(2+c)] \}\end{array}}{c^2(c\beta _0+1+c+\beta _0)} \end{aligned}$$

    and

    $$\begin{aligned}&(1+c+\beta _0)^2[(c^2+c+1)^2+2 c\beta _0(c+1)^2+2c^2(c+1)+\beta _0(\beta _0+2) ] \\&- \{ (1+c+\beta _0)^2+c^2[2(c+1)+\beta _0(2+c)]\}^2 \\= & {} -c^4(1+\beta _0)(c+1)(3+3\beta _0+3c+\beta _0c) \\< & {} 0 \end{aligned}$$

    thus \(\beta _2^{**}(1+\beta _0+c)<1\).

  3. (iii)

    It is easy to see that the equation \(\beta _2^{**}(\beta _1)=1\) has two distinct roots with different signs. A straightforward calculation finds that the positive root is \(\beta _1={\hat{\beta }}_1\), where

    $$\begin{aligned} {\hat{\beta }}_1=\frac{2c+(\beta _0+1)(c+1) +\sqrt{(\beta _0+1)[\beta _0(c-1)^2+(3c+1)^2]}}{2}. \end{aligned}$$

    Then

    $$\begin{aligned} {\hat{\beta }}_1-(1+c+\beta _1)=\frac{ (\beta _0+1)(c-1)+\sqrt{(\beta _0+1)[\beta _0(c-1)^2+(3c+1)^2]}}{2}>0 \end{aligned}$$

    since \((\beta _0+1)[\beta _0(c-1)^2+(3c+1)^2]>(\beta _0+1)^2(c-1)^2\).

  4. (iv)

    For simplicity of notation, denote \(r_1=2\beta _1+(\beta _0-1+\beta _1)c\), \(r_2=c(\beta _1-1-\beta _0)(c\beta _0+\beta _1)+2\beta _1^2\), and \(\varDelta _0=(1+c) (\beta _1-c)(c\beta _0+\beta _1)\). We can rewrite \(\beta _2^*(\beta _1)\) and \(\beta _2^{**}(\beta _1)\) as

    $$\begin{aligned} \beta _2^*(\beta _1)=\frac{r_1-2\sqrt{\varDelta _0}}{c^2}, \qquad \beta _2^{**}(\beta _1)=\frac{2 \beta _1\sqrt{\varDelta _1}-r_2}{c^2(c\beta _0+3\beta _1)}. \end{aligned}$$

    Then

    $$\begin{aligned} \beta _2^*(\beta _1)-\beta _2^{**}(\beta _1) =\frac{ [r_1(c\beta _0+3\beta _1)+r_2 ] -2[ (c\beta _0+3\beta _1)\sqrt{\varDelta _0}+ \beta _1\sqrt{\varDelta _1} ]}{c^2(c\beta _0+3\beta _1)}. \end{aligned}$$

    A direct calculation gives

    $$\begin{aligned}&{[}r_1(c\beta _0+3\beta _1)+r_2]^2 -4\left[ (c\beta _0+3\beta _1)\sqrt{\varDelta _0}+ \beta _1\sqrt{\varDelta _1} \right] ^2\\&\quad = 4(c\beta _0+3\beta _1) ( \varDelta _2- \beta _1\sqrt{\varDelta _0\varDelta _1}), \end{aligned}$$

    where

    $$\begin{aligned} \varDelta _2= & {} c^3\beta _0(\beta _0+c\beta _0+2\beta _1+1) +\beta _1(c^2+2\beta _1^2) \\&+c\beta _1 [c(\beta _1-\beta _0)(\beta _0+c\beta _0+\beta _1) +2\beta _1(\beta _1-1) ] \\> & {} 0 \end{aligned}$$

    for \(\beta _1>1+c+\beta _0\). Furthermore,

    $$\begin{aligned} \varDelta _2^2- \beta _1^2{\varDelta _0\varDelta _1} = c^4[\beta _0(c+1)+(1+\beta _1) ]^2 [\beta _1(\beta _1+1)+\beta _0(c-\beta _1) ]^2>0 \end{aligned}$$

    for \(\beta _1>1+c+\beta _0\). Therefore, we have \(\beta _2^*(\beta _1)-\beta _2^{**}(\beta _1)>0\) for \(\beta _1>1+c+\beta _0\).

  5. (v)

    For the quadratic function \(\varPhi _0 (\beta _2 )\) of \(\beta _2\), it is easy to verify that \(\varPhi _0(\beta _2^{(0)}(\beta _1))<0\). It follows easily that when \(\varDelta _1>0\), the two roots of \(\varPhi _0 (\beta _2)\), \({\hat{\beta }}_2^{**}(\beta _1)\) and \(\beta _2^{**}(\beta _1)\), satisfy \({\hat{\beta }}_2^{**}(\beta _1)<\beta _2^{(0)}(\beta _1)<\beta _2^{**}(\beta _1)\). \(\square \) This completes the proof of Proposition 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Liu, F., Chen, Y. et al. Dynamic Analysis of a Model on Tumor-Immune System with Regulation of PD-1/PD-L1 and Stimulation Delay of Tumor Antigen. Qual. Theory Dyn. Syst. 21, 90 (2022). https://doi.org/10.1007/s12346-022-00627-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-022-00627-5

Keywords

Mathematics Subject Classification

Navigation