Abstract
We propose and investigate a mathematical model on interaction between tumor and the immune system, where the regulation of PD-1/PD-L1 and the stimulation delay of tumor antigen for the immune system are considered. Though delay will not change the structure of equilibria, the global dynamics in the case without delay is simple compared with that in the case with delay. Theoretic analysis and numerical simulations show that the incorporation of delay leads to complex dynamics, including the appearance of oscillating solutions, periodic solutions from Hopf bifurcation, and homoclinic orbits, etc. The effect of the immunotherapy including anti-PD-1/PD-L1 inhibitor and tumor vaccine is also discussed.
Similar content being viewed by others
Availability of Data and Materials
Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.
References
Ali, O.A., Lewin, S.A., Dranoff, G., Mooney, D.J.: Vaccines combined with immune checkpoint antibodies promote cytotoxic T-cell activity and tumor eradication. Cancer Immunol. Res. 4(2), 95–100 (2016). https://doi.org/10.1158/2326-6066.CIR-14-0126
Alsaab, H.O., Sau, S., Alzhrani, R., et al.: PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: mechanism, combinations, and clinical outcome. Front. Pharmacol. 8, 516 (2017). https://doi.org/10.3389/fphar.2017.00561. eCollection 2017
Brahmer, J.R., Tykodi, S.S., Chow, L.Q.M., et al.: Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med. 366(26), 2455–2465 (2012). https://doi.org/10.1056/NEJMoa1200694
Burotto, M., Singh, N., Heery, C.R., et al.: Exploiting synergy: immune-based combinations in the treatment of prostate cancer. Front. Oncol. 4(1), 1–10 (2014). https://doi.org/10.3389/fonc.2014.00351
Chaplain, M., Kuznetsov, V.A., James, Z.H., Stepanova, L.A.: Spatio-temporal dynamics of the immune system response to cancer. In: Mary Ann, H., Gieri, S., Glenn, F.W. (eds.) Mathematical Models in Medical and Health Science, pp. 1–20. Vanderbilt University Press, Nashville, TN (1998)
Eftimie, R., Bramson, J.L., Earn, D.J.D.: Interactions between the immune system and cancer: a brief review of non-spatial mathematical models. Bull. Math. Biol. 73(1), 2–23 (2011). https://doi.org/10.1007/s11538-010-9526-3
Griffiths, J.I., Wallet, P., Pflieger, L.T., et al.: Circulating immune cell phenotype dynamics reflect the strength of tumor-immune cell interactions in patients during immunotherapy. Proc. Natl. Acad. Sci. USA 117(27), 16072–16082 (2020). https://doi.org/10.1073/pnas.1918937117
Gukenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, Berlin (1990)
Hamid, O., Robert, C., Daud, A., et al.: Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N. Engl. J. Med. 369(2), 134–144 (2013). https://doi.org/10.1056/NEJMoa1305133
He, J., Hu, Y., Hu, M., Li, B.: Development of PD-1/PD-L1 pathway in tumor immune microenvironment and treatment for non-small cell lung cancer. Sci. Rep. 5, 13110 (2015). https://doi.org/10.1038/srep13110
Hirayama, M., Nishimur, Y.: The present status and future prospects of peptide-based cancer vaccines. Int. Immunol. 28(7), 319–328 (2016). https://doi.org/10.1093/intimm/dxw027
Hu, X., Ke, G., Jang, S.R.-J.: Modeling pancreatic cancer dyamics with immunotherapy. Bull. Math. Biol. 81(6), 1885–1915 (2019). https://doi.org/10.1007/s11538-019-00591-3
Ishizuka, J.J., Manguso, R.T., Cheruiyot, C.K., et al.: Loss of ADAR1 in tumours overcomes resistance to immune checkpoint blockade. Nature 565(7737), 43–48 (2019). https://doi.org/10.1038/s41586-018-0768-9
Johansen, P., Storni, T., Rettig, L., et al.: Antigen kinetics determines immune reactivity. Proc. Natl. Acad. Sci. USA 105(13), 5189–5194 (2008). https://doi.org/10.1073/pnas.0706296105
Joshi, B., Wang, X., Banerjee, S., et al.: On immunotherapies and cancer vaccination protocols: A mathematical modelling approach. J. Theoret. Biol. 259(4), 820–827 (2009). https://doi.org/10.1016/j.jtbi.2009.05.001
Juneja, V.R., McGuire, K.A., Manguso, R.T., et al.: PD-L1 on tumor cells is sufficient for immune evasion in immunogenic tumors and inhibits CD8 T cell cytotoxicity. J. Exp. Med. 214(4), 895–904 (2017). https://doi.org/10.1084/jem.20160801
Khajanchi, S., Banerjee, S.: Stability and bifurcation analysis of delay induced tumor immune interaction model. Appl. Math. Comput. 248, 652–671 (2014). 1.016/j.amc.2014.10.009
Khajanchi, S., Nieto, J.J.: Mathematical modeling of tumor-immune competitive system, considering the role of time delay. Appl. Math. Comput. 340, 180–205 (2019). https://doi.org/10.1016/j.amc.2018.08.018
Kim, R., Woods, T., Radunskaya, A.: Mathematical modeling of tumor immune interactions: A closer look at the role of a PD-L1 inhibitor in cancer immunotherapy. Spora J. Biomath. 4(1), 25–41 (2018). https://doi.org/10.30707/SPORA4
Kirschner, D., Panetta, J.C.: Modeling immunotherapy of the tumor-immune interaction. J. Math. Biol. 37(3), 235–252 (1998). https://doi.org/10.1007/s002850050127
Kleponis, J., Skelton, R., Zheng, L.: Fueling the engine and releasing the break: combinational therapy of cancer vaccines and immune checkpoint inhibitors. Cancer Biol. Med. 12(3), 201–208 (2015). https://doi.org/10.7497/j.issn.2095-3941.2015.0046
Kuang, Y.: Delay Differential Equations with Applications in Population Dynamics. Academic Press, Boston (1993)
Kuznetsov, V.A., Makalkin, I.A., Taylor, M.A., Perelon, A.S.: Nonlinear dynamics of immunogenic tumors: Parameter estimation and global bifurcation analysis. Bull. Math. Biol. 56(2), 295–321 (1994). https://doi.org/10.1016/S0092-8240(05)80260-5
Keshavarz-Fathi, M., Rezaei, N.: Vaccines for Cancer Immunotherapy. Academic Press (2018). https://doi.org/10.1016/C2017-0-01055-8
Lai, X. Friedman, A.: Combination therapy of cancer with cancer vaccine and immune checkpoint inhibitors: A mathematical model. PLoS One, 12(5), e0178479 (2017). https://doi.org/10.1371/journal.pone.0178479. eCollection 2017
Li, J., Xie, X., Chen, Y., Zhang, D.: Complex dynamics of a tumor-immune system with antigenicity. Appl. Math. Comput. 400 paper No. 126052, 2 pp. (2021). https://doi.org/10.1016/j.amc.2021.126052
Maute, R.L., Gordon, S.R., Mayer, A.T., et al.: Engineering high-affinity PD-1 variants for optimized immunotherapy and immuno-PET imaging. Proc. Natl. Acad. Sci. USA 112(47), E6505–E6514 (2015). https://doi.org/10.1073/pnas.1519623112
Mortezaee, K., Narmani, A., Salehi, M., et al.: Synergic effects of nanoparticles-mediated hyperthermia in radiotherapy/chemotherapy of cancer. Life Sci. 269, 119020 (2021). https://doi.org/10.1016/j.lfs.2021.119020
Matzavinos, A., Chaplain, M.A.J., Kuznetsov, V.A.: Mathematical modelling of the spatio-temporal response of cytotoxic T-lymphocytes to a solid tumour. Math. Med. Biol. 21(1), 1–34 (2004). https://doi.org/10.1093/imammb/21.1.1
Nikolopoulou, E., Eikenberry, S.E., Gevertz, J.L., Kuang, Y.: Mathematical modeling of an immune checkpoint inhibitor and its synergy with an immunostimulant. Discrete Contin. Dyn. Syst. Ser B 26(4), 2133–2159 (2021). https://doi.org/10.3934/dcdsb.2020138
Nikolopoulou, E., Johnson, L.R., Harris, D., et al.: Tumour-immune dynamics with an immune checkpoint inhibitor. Lett. Biomath. 5(suppl. 1), S137–S159 (2018). https://doi.org/10.1080/23737867.2018.1440978
Nishida, N., Kudo, M.: Immunological microenvironment of hepatocellular carcinoma and its clinical implication. Oncology 92(suppl. 1), 40–49 (2017). https://doi.org/10.1159/000451015
Pang, L., Liu, S., Zhang, X., Tia, T.: Mathematical modeling and dynamic analysis of anti-tumor immune response. J. Appl. Math. Comput. 62(1–2), 473–488 (2020). https://doi.org/10.1007/s12190-019-01292-9
Peng, W., Lizée, G., Hwu, P.: Blockade of the PD-1 pathway enhances the efficacy of adoptive cell therapy against cancer. Oncoimmunology 2(2), e22691 (2013). https://doi.org/10.4161/onci.22691
Prieto, J., Melero, I., Sangro, B.: Immunological landscape and immunotherapy of hepatocellular carcinoma. Nat. Rev. Gastroenterol. Hepatol. 12(12), 681–700 (2015). https://doi.org/10.1038/nrgastro.2015.173
de Pillis, L.G., Radunskaya, A.E., Wiseman, C.L.: A validated mathematical model of cell-mediated immune response to tumor growth. Cancer Res. 65(17), 7950–7958 (2005). https://doi.org/10.1158/0008-5472.CAN-05-0564
de Pillis, L.G., Gu, W., Radunskaya, A.E.: Mixed immunotherapy and chemotherapy of tumors: modeling, applications and biological interpretations. J. Theoret. Biol. 238(4), 841–862 (2006). https://doi.org/10.1016/j.jtbi.2005.06.037
Ruan, S.: Nonlinear dynamics in tumor-immune system interaction models with delays. Discrete Contin. Dyn. Syst. Ser. B 26(1), 541–602 (2021). https://doi.org/10.3934/dcdsb.2020282
Sahin, U., Türeci, Ö.: Personalized vaccines for cancer immunotherapy. Science 359(6382), 1355–1360 (2018). https://doi.org/10.1126/science.aar7112
Schreiber, R.D., Old, L.J., Smyth, M.J.: Cancer immunoediting: Integrating immunity’s roles in cancer suppression and promotion. Science 331(6024), 1565–1570 (2011). https://doi.org/10.1126/science.1203486
Scott, A.M., Wolchok, J.D., Old, L.J.: Antibody therapy of cancer. Nat. Rev. Cancer 12(4), 278–287 (2012). https://doi.org/10.1038/nrc3236
Serre, R., Benzekry, S., Padovani, L., et al.: Mathematical modeling of cancer immunotherapy and its synergy with radiotherapy. Cancer Res. 76(17), 4931–4940 (2016). https://doi.org/10.1158/0008-5472.CAN-15-3567
Shi, L., Chen, S., Yang, L., Li, Y.: The role of PD-1 and PD-L1 in T-cell immune suppression in patients with hematological malignancies. J. Hematol. Oncol. 6, Art. No. 74 (2013)
Shi, S., Huang, J., Kuang, Y.: Global dynamics in a tumor-immune model with an immune checkpoint inhibitor. Discrete Contin. Dyn. Syst. Ser. B 26(2), 1149–1170 (2021). https://doi.org/10.3934/dcdsb.2020157
Srinivasan, V.M., Ferguson, S.D., Lee, S., et al.: Tumor vaccines for malignant gliomas. Neurotherapeutics 14(2), 345–357 (2017). https://doi.org/10.1007/s13311-017-0522-2
Tian, H., Shi, G., Wang, Q., et al.: A novel cancer vaccine with the ability to simultaneously produce anti-PD-1 antibody and GM-CSF in cancer cells and enhance Th1-biased antitumor immunity. Signal Transduct. Target. Ther. 1, 16025 (2016). https://doi.org/10.1038/sigtrans.2016.25. eCollection 2016
Topalian, S.L., Hodi, F.S., Brahmer, J.R., et al.: Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 366(26), 2443–2454 (2012). https://doi.org/10.1056/NEJMoa1200690
Wu, H., Fu, X., Zhai, Y., et al.: Development of effective tumor vaccine strategies based on immune response cascade reactions. Adv. Healthcare Mater. 10(13), e2100299 (2021). https://doi.org/10.1002/adhm.202100299
Yan, Y., Kumar, A.B., Finnes, H., et al.: Combining immune checkpoint inhibitors with conventional cancer therapy. Front. Immunol. 9, 1739 (2018). https://doi.org/10.3389/fimmu.2018.01739.eCollection 2018
Zhang, Z., Lu, M., Qin, Y., et al.: Neoantigen: A new breakthrough in tumor immunotherapy. Front. Immunol. 12, 672356 (2021). https://doi.org/10.3389/fimmu.2021.672356
Funding
This work is supported partially by the National Natural Science Foundation of PR China (Nos. 11971281, 12071268), the Project of Xi’an Medical University (No. 2018GJFY05), and NSERC of Canada (No. RGPIN-2019-05892).
Author information
Authors and Affiliations
Contributions
All authors contributed equally to the writing of this paper.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that there is no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendices
High Order Equilibrium of System (4)
1.1 Local Dynamics of System (4) Near \(P_0\)
To investigate the dynamical behavior of system (4) near \(P_0\) when \(\beta _2=1\) and \(c\ne \beta _1\), we let \(u=x-1\) and \(v=y\) to transform (4) into
Further, let \(u=w+(c-\beta _1)v\). Then (14) becomes
By the center manifold theorem [8], we assume that the local center manifold of (15) at the origin is expressed by the function
where a is a constant to be determined. From \(\frac{dw}{dt}=[2av+o(v)]\frac{dv}{dt}\) and (15) we have
By letting the coefficient of \(v^2\) in the left-hand side of (16) be zero, we get \(a=\beta _1(\beta _1-c)\).
Substituting the obtained local center manifold \(w=\beta _1(\beta _1-c)v^2+o(v^2)\) into the second equation of (15) yields
Then when \(\beta _1\ne 1+c+\beta _0\), \(P_0\) is a saddle-node. Further, according to the first equation of (15), when \(\beta _1< 1+c+\beta _0\), \(P_0\) is attracting in the part corresponding to the node while when \(\beta _1> 1+c+\beta _0\), \(P_0\) is repelling in the part corresponding to the node. When \(\beta _1=1+c+\beta _0\), (17) becomes
It follows that, when \(\beta _2=1\) and \(\beta _1= 1+c+\beta _0\), \(P_0\) is a locally asymptotically node by the first equation of (15).
In summary, this gives the local stability of \(P_0\) when \(\beta _2=1\) and \(c\ne \beta _1\). \(\square \)
1.2 Local Dynamics of System (4) Near \(P^*_*\)
In order to study the dynamical behavior of (4) near \(P^*_*\), we translate \(P^*_*\) to the origin by the transformation \(u=x-x^*_*\) and \(v=y-y^*_*\). Then (4) becomes
It follows from \(\det J(P^*_*)=0\) that \(c-\beta _1x^*_*=-\frac{(1+\beta _1y^*_*)(1+\beta _0x^*_*)}{\beta _0y^*_*+\beta _2^*}\). Then (18) is rewritten as
where \(a=1+\beta _1y^*_*\), \(b=\beta _0y^*_*+\beta _2^*\), and \(m=1+\beta _0x^*_*\).
Furthermore, using the reversible transformation of variables
that is,
we can transform (19) into
where
Then the local center manifold of (20) at the origin can be obtained similarly as that of (15), which is
Substituting it into the second equation of (20) yields
where \(b\beta _1-a\beta _0=\beta _1\beta _2^*-\beta _0\) has been used. From \(\varDelta (\frac{\beta _0}{\beta _1}) =\frac{(\beta _1^2+\beta _1-\beta _0\beta _1+c\beta _0)^2}{\beta _1^2}>0\) for \(\beta _1>1+c+\beta _0\), we know that \(\beta _1\beta _2^*-\beta _0\ne 0\) since \(\varDelta (\beta _2^*)=0\). Therefore, \(P^*_*\) is a saddle-node (see, for example, [8]). \(\square \)
Proof of Proposition 1
During the discussion, Maple has been used to do some symbolic calculations.
-
(i)
A straightforward calculation gives
$$\begin{aligned} \beta _2^{**}(1+\beta _0)=\frac{2(1+\beta _0) {[}\sqrt{(1+\beta _0)^2+c^2(c\beta _0+3+3\beta _0)} -(1+\beta _0)]}{c^2(c\beta _0+3+3\beta _0)}>0 \end{aligned}$$and
$$\begin{aligned}&\beta _2^{**}(1+\beta _0)-1 \\= & {} \frac{2(1+\beta _0) \sqrt{(1+\beta _0)^2+c^2(c\beta _0+3+3\beta _0)} -[2(1+\beta _0)^2 +c^2(c\beta _0+3+3\beta _0)]}{c^2(c\beta _0+3+3\beta _0)}. \end{aligned}$$Since
$$\begin{aligned}&[2(1+\beta _0)\sqrt{(1+\beta _0)^2+c^2(c\beta _0 +3+3\beta _0)}]^2 -[2(1+\beta _0)^2 +c^2(c\beta _0+3+3\beta _0)]^2 \\= & {} - c^4(c\beta _0+3+3\beta _0)^2 \\< & {} 0, \end{aligned}$$it follows that \(\beta _2^{**}(1+\beta _0)<1\).
-
(ii)
On the one hand, we have
$$\begin{aligned} \beta _2^{**}(1+\beta _0+c)=\frac{2(1+c+\beta _0) \sqrt{\varDelta _0}-Q}{c^2[3(1+c)+\beta _0(3+c)]}, \end{aligned}$$where
$$\begin{aligned} \varDelta _0= & {} (1+c+\beta _0)^2+c^2(c+2)(c+2\beta _0+2), \\ Q= & {} 2(1+c+\beta _0)^2+c^2(1+c)(\beta _0+1). \end{aligned}$$Since
$$\begin{aligned}&4(1+c+\beta _0)^2\varDelta _0^2-Q^2 \\= & {} c^2[3(1+c+\beta _0)+c\beta _0] [4(1+c+\beta _0)^2+c^2(1+\beta _0)-(\beta _0-1)c^3], \end{aligned}$$we can easily see that \(\beta _2^{**}(1+\beta _0+c)\) can be positive or negative. On the other hand,
$$\begin{aligned}&\beta _2^{**}(1+\beta _0+c)-1 \\= & {} \frac{\begin{array}{l} 2 \{(1+c+\beta _0)\sqrt{(c^2+c+1)^2+2 c\beta _0(c+1)^2+2c^2(c+1)+\beta _0(\beta _0+2)} \\ - (1+c+\beta _0)^2-c^2[2(c+1)+\beta _0(2+c)] \}\end{array}}{c^2(c\beta _0+1+c+\beta _0)} \end{aligned}$$and
$$\begin{aligned}&(1+c+\beta _0)^2[(c^2+c+1)^2+2 c\beta _0(c+1)^2+2c^2(c+1)+\beta _0(\beta _0+2) ] \\&- \{ (1+c+\beta _0)^2+c^2[2(c+1)+\beta _0(2+c)]\}^2 \\= & {} -c^4(1+\beta _0)(c+1)(3+3\beta _0+3c+\beta _0c) \\< & {} 0 \end{aligned}$$thus \(\beta _2^{**}(1+\beta _0+c)<1\).
-
(iii)
It is easy to see that the equation \(\beta _2^{**}(\beta _1)=1\) has two distinct roots with different signs. A straightforward calculation finds that the positive root is \(\beta _1={\hat{\beta }}_1\), where
$$\begin{aligned} {\hat{\beta }}_1=\frac{2c+(\beta _0+1)(c+1) +\sqrt{(\beta _0+1)[\beta _0(c-1)^2+(3c+1)^2]}}{2}. \end{aligned}$$Then
$$\begin{aligned} {\hat{\beta }}_1-(1+c+\beta _1)=\frac{ (\beta _0+1)(c-1)+\sqrt{(\beta _0+1)[\beta _0(c-1)^2+(3c+1)^2]}}{2}>0 \end{aligned}$$since \((\beta _0+1)[\beta _0(c-1)^2+(3c+1)^2]>(\beta _0+1)^2(c-1)^2\).
-
(iv)
For simplicity of notation, denote \(r_1=2\beta _1+(\beta _0-1+\beta _1)c\), \(r_2=c(\beta _1-1-\beta _0)(c\beta _0+\beta _1)+2\beta _1^2\), and \(\varDelta _0=(1+c) (\beta _1-c)(c\beta _0+\beta _1)\). We can rewrite \(\beta _2^*(\beta _1)\) and \(\beta _2^{**}(\beta _1)\) as
$$\begin{aligned} \beta _2^*(\beta _1)=\frac{r_1-2\sqrt{\varDelta _0}}{c^2}, \qquad \beta _2^{**}(\beta _1)=\frac{2 \beta _1\sqrt{\varDelta _1}-r_2}{c^2(c\beta _0+3\beta _1)}. \end{aligned}$$Then
$$\begin{aligned} \beta _2^*(\beta _1)-\beta _2^{**}(\beta _1) =\frac{ [r_1(c\beta _0+3\beta _1)+r_2 ] -2[ (c\beta _0+3\beta _1)\sqrt{\varDelta _0}+ \beta _1\sqrt{\varDelta _1} ]}{c^2(c\beta _0+3\beta _1)}. \end{aligned}$$A direct calculation gives
$$\begin{aligned}&{[}r_1(c\beta _0+3\beta _1)+r_2]^2 -4\left[ (c\beta _0+3\beta _1)\sqrt{\varDelta _0}+ \beta _1\sqrt{\varDelta _1} \right] ^2\\&\quad = 4(c\beta _0+3\beta _1) ( \varDelta _2- \beta _1\sqrt{\varDelta _0\varDelta _1}), \end{aligned}$$where
$$\begin{aligned} \varDelta _2= & {} c^3\beta _0(\beta _0+c\beta _0+2\beta _1+1) +\beta _1(c^2+2\beta _1^2) \\&+c\beta _1 [c(\beta _1-\beta _0)(\beta _0+c\beta _0+\beta _1) +2\beta _1(\beta _1-1) ] \\> & {} 0 \end{aligned}$$for \(\beta _1>1+c+\beta _0\). Furthermore,
$$\begin{aligned} \varDelta _2^2- \beta _1^2{\varDelta _0\varDelta _1} = c^4[\beta _0(c+1)+(1+\beta _1) ]^2 [\beta _1(\beta _1+1)+\beta _0(c-\beta _1) ]^2>0 \end{aligned}$$for \(\beta _1>1+c+\beta _0\). Therefore, we have \(\beta _2^*(\beta _1)-\beta _2^{**}(\beta _1)>0\) for \(\beta _1>1+c+\beta _0\).
-
(v)
For the quadratic function \(\varPhi _0 (\beta _2 )\) of \(\beta _2\), it is easy to verify that \(\varPhi _0(\beta _2^{(0)}(\beta _1))<0\). It follows easily that when \(\varDelta _1>0\), the two roots of \(\varPhi _0 (\beta _2)\), \({\hat{\beta }}_2^{**}(\beta _1)\) and \(\beta _2^{**}(\beta _1)\), satisfy \({\hat{\beta }}_2^{**}(\beta _1)<\beta _2^{(0)}(\beta _1)<\beta _2^{**}(\beta _1)\). \(\square \) This completes the proof of Proposition 1.
Rights and permissions
About this article
Cite this article
Li, J., Liu, F., Chen, Y. et al. Dynamic Analysis of a Model on Tumor-Immune System with Regulation of PD-1/PD-L1 and Stimulation Delay of Tumor Antigen. Qual. Theory Dyn. Syst. 21, 90 (2022). https://doi.org/10.1007/s12346-022-00627-5
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s12346-022-00627-5