Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Online Vehicle Forensics Method of Responsible Party for Accidents Based on LSTM-BiDBN External Intrusion Detection

基于LSTM-BiDBN入侵检测系统的在线车辆取证责任方认定方法

  • Original Paper
  • Published:
Journal of Shanghai Jiaotong University (Science) Aims and scope Submit manuscript

Abstract

Vehicle data is one of the important sources of traffic accident digital forensics. We propose a novel method using long short-term memory-deep belief network by binary encoding (LSTM-BiDBN) controller area network identifier (CAN ID) to extract the event sequence of CAN IDs and the semantic of CAN IDs themselves. Instead of detecting attacks only aimed at a specific CAN ID, the proposed method fully considers the potential interaction between electronic control units. By this means, we can detect whether the vehicle has been invaded by the outside, to online determine the responsible party of the accident. We use our LSTM-BiDBN to distinguish attack-free and abnormal situations on CAN-intrusion-dataset. Experimental results show that our proposed method is more effective in identifying anomalies caused by denial of service attack, fuzzy attack and impersonation attack with an accuracy value of 97.02%, a false-positive rate of 6.09%, and a false-negative rate of 1.94% compared with traditional methods.

摘要

车辆数据是交通事故数字取证的重要来源之一。提出了一种利用二进制编码的长短期记忆-深度信念网络(LSTM-BiDBN)控制器局域网标识符(CAN ID)提取CAN ID事件序列和CAN ID本身语义的新方法。该方法不仅检测针对特定CAN ID的攻击,而且充分考虑了电子控制单元之间潜在的相互作用。通过这种方式,可以检测车辆是否被外界入侵,从而在线确定事故的责任方。使用LSTM-BiDBN来区分CAN入侵数据集上的无攻击和异常情况。实验结果表明:与传统方法相比,该方法在识别拒绝服务攻击、模糊攻击和模拟攻击引起的异常方面更为有效,准确率为97.02%,误检率为6.09%,错误率为1.94%。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. LE-KHAC N A, JACOBS D, NIJHOFF J, et al. Smart vehicle forensics: Challenges and case study [J]. Future Generation Computer Systems, 2020, 109: 500–510.

    Article  Google Scholar 

  2. CHECKOWAY S, MCCOY D, KANTOR B, et al. Comprehensive experimental analyses of automotive attack surfaces [C]//20th USENIX Security Symposium. San Francisco: USENIX, 2011: 447–462.

    Google Scholar 

  3. HAN K, DIVYA POTLURI S, SHIN K G. On authentication in a connected vehicle: Secure integration of mobile devices with vehicular networks [C]//2013 ACM/IEEE International Conference on Cyber-Physical Systems. Philadelphia: IEEE, 2013: 160–169.

    Google Scholar 

  4. FOSTER I, PRUDHOMME A, KOSCHER K, et al. Fast and vulnerable: A story of telematic failures [C]//9th USENIX Conference on Offensive Technologies. Washington: USENIX, 2015: 1–9.

    Google Scholar 

  5. WANG E, XU W, SASTRY S, et al. Hardware module-based message authentication in intra-vehicle networks [C]//2017 ACM/IEEE 8th International Conference on Cyber-Physical Systems. Pittsburgh: IEEE, 2017: 207–216.

    Google Scholar 

  6. MÜTER M, ASAJ N. Entropy-based anomaly detection for in-vehicle networks [C]//2011 IEEE Intelligent Vehicles Symposium. Baden-Baden: IEEE, 2011: 1110–1115.

    Google Scholar 

  7. LEE H, JEONG S H, KIM H K. OTIDS: A novel intrusion detection system for in-vehicle network by using remote frame [C]//2017 15th Annual Conference on Privacy, Security and Trust. Calgary: IEEE, 2017: 57–66.

    Google Scholar 

  8. ASHFAQ R A R, WANG X Z, HUANG J Z, et al. Fuzziness based semi-supervised learning approach for intrusion detection system [J]. Information Sciences, 2017, 378: 484–497.

    Article  Google Scholar 

  9. IDHAMMAD M, AFDEL K, BELOUCH M. Semi-supervised machine learning approach for DDoS detection [J]. Applied Intelligence, 2018, 48(10): 3193–3208.

    Article  Google Scholar 

  10. PAZUL K. Controller area network (CAN) basics [EB/OL]. [2022-05-24]. https://cika.com/soporte/Information/Microchip/AnalogInterface/CAN/AppNotes/AN713(DS00713a).pdf.

  11. YU F, LI D F, CROLLA D A. Integrated Vehicle Dynamics Control — state-of-the art review [C]//2008 IEEE Vehicle Power and Propulsion Conference. Harbin: IEEE, 2008: 1–6.

    Google Scholar 

  12. KOSCHER K, CZESKIS A, ROESNER F, et al. Experimental security analysis of a modern automobile [C]//2010 IEEE Symposium on Security and Privacy. Oakland: IEEE, 2010: 447–462.

    Google Scholar 

  13. HOPPE T, KILTZ S, DITTMANN J. Security threats to automotive CAN networks—Practical examples and selected short-term countermeasures [J]. Reliability Engineering & System Safety, 2011, 96(1): 11–25.

    Article  Google Scholar 

  14. THEISSLER A. Anomaly detection in recordings from in-vehicle networks [M]//Big data applications and principes. Madrid: Universidad Politécnica de Madrid, 2014: 23–38.

    Google Scholar 

  15. KANG M J, KANG J W. Intrusion detection system using deep neural network for in-vehicle network security [J]. PLoS ONE, 2016, 11(6): e0155781.

    Article  Google Scholar 

  16. YU Y, SI X S, HU C H, et al. A review of recurrent neural networks: LSTM cells and network architectures [J]. Neural Computation, 2019, 31(7): 1235–1270.

    Article  MathSciNet  Google Scholar 

  17. ALKHATIB N, GHAUCH H, DANGER J L. SOME/IP intrusion detection using deep learning-based sequential models in automotive Ethernet networks [C]//2021 IEEE 12th Annual Information Technology, Electronics and Mobile Communication Conference. Vancouver: IEEE, 2021: 954–962.

    Google Scholar 

  18. KHAN Z, CHOWDHURY M, ISLAM M, et al. Long short-term memory neural networks for false information attack detection in software-defined in-vehicle network [DB/OL]. (2019-06-24). https://arxiv.org/abs/1906.10203.

  19. HOSSAIN M D, INOUE H, OCHIAI H, et al. LSTM-based intrusion detection system for in-vehicle can bus communications [J]. IEEE Access, 2020, 8: 185489–185502.

    Article  Google Scholar 

  20. SEGER C. An investigation of categorical variable encoding techniques in machine learning: Binary versus one-hot and feature hashing [R]. Stockholm: KTH Royal Institute of Technology, 2018.

    Google Scholar 

  21. HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets [J]. Neural Computation, 2006, 18(7): 1527–1554.

    Article  MathSciNet  Google Scholar 

  22. HE K M, ZHANG X Y, REN S Q, et al. Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification [C]//2015 IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 1026–1034.

    Google Scholar 

  23. HOCHREITER S, SCHMIDHUBER J. Long short-term memory [J]. Neural Computation, 1997, 9(8): 1735–1780.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Genke Yang  (杨根科).

Additional information

Foundation item: the National Key R&D Program of China (No. 2017YFA60700602)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Xu, J., Yang, G. et al. Online Vehicle Forensics Method of Responsible Party for Accidents Based on LSTM-BiDBN External Intrusion Detection. J. Shanghai Jiaotong Univ. (Sci.) 29, 1161–1168 (2024). https://doi.org/10.1007/s12204-022-2549-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12204-022-2549-8

Key words

关键词

CLC number

Document code

Navigation