Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Efficient numerical schemes based on the cubic B-spline collocation method for time-fractional partial integro-differential equations of Volterra type

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

This paper proposes two efficient numerical schemes to deal with time-fractional integro-differential reaction-convection-diffusion equations of the Volterra type in a rectangular domain. The fractional derivative is taken in the Caputo sense of order \( \alpha \in (0,1).\) In order to construct the computational semi-discrete schemes, we discretize the fractional operator using finite difference techniques, namely the L1 and the L1-2, on a uniform mesh in the time direction. A composite trapezoidal rule approximates the integral part. The semi-discrete problems become a set of two-point boundary value problems (BVPs) in the spatial domain. The cubic B-spline collocation method is employed to solve the corresponding BVPs. The optimal error estimation and convergence analysis are established under suitable regularity assumptions on the initial data and the true solution of the considered model problem. It is shown in the theoretical establishment that the L1 based scheme achieves \( (2-\alpha ) \) order of accuracy, while the rate of convergence of the L1-2 based scheme is quadratic. Finally, a numerical experiment is performed in support of the theoretical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data sets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Adel, M., Assiri, T.A., Khader, M.M., Osman, M.S.: Numerical simulation by using the spectral collocation optimization method associated with Vieta–Lucas polynomials for a fractional model of non-Newtonian fluid. Results Phys. 41, 105927 (2022)

    Article  Google Scholar 

  2. Arqub, O.A., Tayebi, S., Baleanu, D., Osman, M.S., Mahmoud, W., Alsulami, H.: A numerical combined algorithm in cubic B-spline method and finite difference technique for the time-fractional nonlinear diffusion wave equation with reaction and damping terms. Results Phys. 41, 105912 (2022)

    Article  Google Scholar 

  3. Arshed, S.: B-spline solution of fractional integro partial differential equation with a weakly singular kernel. Numer. Methods Partial Differ. Equ. 33(5), 1565–1581 (2017)

    Article  MathSciNet  Google Scholar 

  4. Babaei, A., Moghaddam, B.P., Banihashemi, S., Machado, J.A.T.: Numerical solution of variable-order fractional integro-partial differential equations via Sinc collocation method based on single and double exponential transformations. Commun. Nonlinear Sci. Numer. Simul. 82, 104985 (2020)

    Article  MathSciNet  Google Scholar 

  5. Chu, Y., Rashid, S., Kubra, K.T., Inc, M., Hammouch, Z., Osman, M.S.: Analysis and numerical computations of the multi-dimensional, time-fractional model of Navier–Stokes equation with a new integral transformation. Comput. Model. Eng. Sci. 136(3), 3025–3060 (2023)

    Google Scholar 

  6. de Boor, C.: On the convergence of odd degree spline interpolation. J. Approx. Theory 1, 452–463 (1968)

    Article  MathSciNet  Google Scholar 

  7. Dehghan, M.: Solution of a partial integro-differential equation arising from viscoelasticity. Int. J. Comput. Math. 83(1), 123–129 (2006)

    Article  MathSciNet  Google Scholar 

  8. Diethelm, K.: The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type, vol. 2004. Springer-Verlag, Berlin (2010)

    Google Scholar 

  9. Fairweather, G.: Spline collocation methods for a class of hyperbolic partial integro-differential equations. SIAM J. Numer. Anal. 31(2), 444–460 (1994)

    Article  MathSciNet  Google Scholar 

  10. Gao, G.H., Sun, Z.Z., Zhang, H.W.: A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications. J. Comput. Phys. 259, 33–50 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  11. Genieys, S., Volpert, V., Auger, P.: Pattern and waves for a model in population dynamics with nonlocal consumption of resources. Math. Model. Nat. Phenom. 1(1), 63–80 (2006)

    Article  MathSciNet  Google Scholar 

  12. Ghosh, B., Mohapatra, J.: Analysis of finite difference schemes for Volterra integro-differential equations involving arbitrary order derivatives. J. Appl. Math. Comput. 69, 1865–1886 (2023)

    Article  MathSciNet  Google Scholar 

  13. Ghosh, B., Mohapatra, J.: Analysis of a second-order numerical scheme for time-fractional partial integro-differential equations with a weakly singular kernel. J. Comput. Sci. 74, 102157 (2023)

    Article  Google Scholar 

  14. Hall, C.A.: On error bounds for spline interpolation. J. Approx. Theory 1, 209–218 (1968)

    Article  MathSciNet  Google Scholar 

  15. Hepperger, P.: Hedging electricity swaptions using partial integro-differential equations. Stoch. Process. Appl. 122(2), 600–622 (2012)

    Article  MathSciNet  Google Scholar 

  16. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, vol. 204. Elsevier, San Diego (2006)

    Book  Google Scholar 

  17. Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225(2), 1533–1552 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  18. Maji, S., Natesan, S.: Analytical and numerical solution techniques for a class of time-fractional integro-partial differential equations. Numer. Algorithms 94, 229–256 (2023)

    Article  MathSciNet  Google Scholar 

  19. Miller, R.K.: An integrodifferential equation for rigid heat conductors with memory. J. Math. Anal. Appl. 66(2), 313–332 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  20. Mirzaee, F., Alipour, S.: Numerical solution of nonlinear partial quadratic integro-differential equations of fractional order via hybrid of block-pulse and parabolic functions. Numer. Methods Partial Differ. Equ. 35(3), 1134–1151 (2019)

    Article  MathSciNet  Google Scholar 

  21. Mohammadpour, A., Babaei, A., Banihashemi, S.: A numerical scheme for solving a class of time fractional integro-partial differential equations with Caputo–Fabrizio derivative. Asian-Eur. J. Math. 15(11), 2250190 (2022)

    Article  MathSciNet  Google Scholar 

  22. Owolabi, K.M., Agarwal, R.P., Pindza, E., Bernstein, S., Osman, M.S.: Complex Turing patterns in chaotic dynamics of autocatalytic reactions with the Caputo fractional derivative. Neural Comput. Appl. 35, 11309–11335 (2023)

    Article  Google Scholar 

  23. Panda, A., Santra, S., Mohapatra, J.: Adomian decomposition and homotopy perturbation method for the solution of time fractional partial integro-differential equations. J. Appl. Math. Comput. 68, 2065–2082 (2022)

    Article  MathSciNet  Google Scholar 

  24. Podlubny, I.: Fractional Differential Equations. Academie Press, New York (1999)

    Google Scholar 

  25. Prenter, P.M.: Splines and Variational Methods. Wiley, New York (1975)

    Google Scholar 

  26. Qureshi, S., Akanbi, M.A., Shaikh, A.A., Wusu, A.S., Ogunlaran, O.M., Mahmoud, W., Osman, M.S.: A new adaptive nonlinear numerical method for singular and stiff differential problems. Alex. Eng. J. 74, 585–597 (2023)

    Article  Google Scholar 

  27. Rossikhin, Y.A., Shitikova, M.V.: Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids. Appl. Mech. Rev. 50(1), 15–67 (1997)

    Article  ADS  Google Scholar 

  28. Santra, S., Mohapatra, J.: A novel finite difference technique with error estimate for time fractional partial integro-differential equation of Volterra type. J. Comput. Appl. Math. 400, 113746 (2021)

    Article  MathSciNet  Google Scholar 

  29. Santra, S., Mohapatra, J.: Higher order approximations for fractional order integro-parabolic partial differential equations on an adaptive mesh with error analysis. Comput. Math. Appl. 150, 87–101 (2023)

    Article  MathSciNet  Google Scholar 

  30. Scalas, E., Gorenflo, R., Mainardi, F.: Fractional calculus and continuous-time finance. Phys. A. 284(1–4), 376–384 (2000)

    Article  MathSciNet  Google Scholar 

  31. Shi, L., Tayebi, S., Arqub, O.A., Osman, M.S., Agarwal, P., Mahamoud, W., Alhodaly, M.: The novel cubic B-spline method for fractional Painleve and Bagley–Trovik equations in the Caputo, Caputo–Fabrizio, and conformable fractional sense. Alex. Eng. J. 65, 413–426 (2023)

    Article  Google Scholar 

  32. Shi, L., Rashid, S., Sultana, S., Khalid, A., Agarwal, P., Osman, M.S.: Semi-analytical view of time-fractional PDES with proportional delays pertaining to index and Mittag–Leffler memory interacting with hybrid transforms. Fractals 2340071 (2023)

  33. Shivanian, E.: Analysis of meshless local radial point interpolation (MLRPI) on a nonlinear partial integro-differential equation arising in population dynamics. Eng. Anal. Bound. Elem. 37(12), 1693–1702 (2013)

    Article  MathSciNet  Google Scholar 

  34. Sun, H., Zhang, Y., Baleanu, D., Chen, W., Chen, Y.: A new collection of real world applications of fractional calculus in science and engineering. Commun. Nonlinear Sci. Numer. Simul. 64, 213–231 (2018)

    Article  ADS  Google Scholar 

  35. Wang, B.J., Lin, J., Ke, S.H.: Regular quantum plasmons in segments of graphene nanoribbons. Int. J. Mod. Phys. C 33(11), 2250141 (2022)

    Article  ADS  CAS  Google Scholar 

  36. Yao, S.W., Arqub, O.A., Tayebi, S., Osman, M.S., Mahmoud, W., Inc, M., Alsulami, H.: A novel collective algorithm using cubic uniform spline and finite difference approaches to solving fractional diffusion singular wave model through damping-reaction forces. Fractals 2340069 (2023)

  37. Zhang, X.Z., Khalid, A., Inc, M., Rehan, A., Nisar, K.S., Osman, M.S.: Cubic spline solutions of the ninth order linear and non-linear boundary value problems. Alex. Eng. J. 61(12), 11635–11649 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

The first author acknowledges the financial support from the Council of Scientific & Industrial Research (CSIR), India (File No.: 09/983(0046)/2020-EMR-I).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jugal Mohapatra.

Ethics declarations

Conflicts of interest

The authors declare that there is no conflicts of interest.

Ethical approval

The manuscript in part or in full has not been submitted or published anywhere.

Informed consent

On behalf of the authors, Dr. Jugal Mohapatra shall be communicating the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, B., Mohapatra, J. Efficient numerical schemes based on the cubic B-spline collocation method for time-fractional partial integro-differential equations of Volterra type. J. Appl. Math. Comput. 70, 741–769 (2024). https://doi.org/10.1007/s12190-023-01981-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-023-01981-6

Keywords

Mathematics Subject Classification

Navigation