Abstract
Film clips are widely utilized to evoke emotional responses in the laboratory. We found, however, that different fields tend to select emotional film clips using different approaches. Specifically, psychologists focus more on the discreteness of emotions, whereas computer scientists focus more on the valence and arousal of emotions. Different concerns lead to distinct film selection methods, which may challenge the validity of the emotional databases and hinder communication between disciplines. In recent years, the hybrid discrete–dimensional model has been developed. Based on this hybrid theory, in this study, we attempted to synthesize the diverse approaches and developed a possible unified criterion for emotional film selection across disciplines. Twenty-eight film clips aimed at eliciting four basic emotions (i.e., anger, sadness, fear, and happiness) were evaluated by 70 participants. We examined both discrete and dimensional indicators and applied a new integrative film selection criterion. The results showed that compared with the discrete model or the dimensional model, the hybrid model presented the most reasonable film clip selection outcomes, and 12 film clips were recommended to induce strong and discrete emotions. These findings may enlighten further research on emotion in both theoretical and methodological ways.
Similar content being viewed by others
References
Abadi, M. K., Subramanian, R., Kia, S. M., Avesani, P., Patras, I., & Sebe, N. (2015). DECAF: MEG-based multimodal database for decoding affective physiological responses. IEEE Transactions on Affective Computing, 6(3), 209–222. https://doi.org/10.1109/TAFFC.2015.2392932
Abdulrahman, A., & Baykara, M. (2021). A comprehensive review for emotion detection based on EEG signals: Challenges, applications, and open issues. Traitement du Signal, 38(4), 1189–1200. https://doi.org/10.18280/ts.380430
Backs, R. W., da Silva, S. P., & Han, K. (2005). A comparison of younger and older adults’ self- assessment manikin ratings of affective pictures. Experimental Aging Research, 31, 421–440.
Barrett, L. F. (2006). Solving the emotion paradox: Categorization and the experience of emotion. Personality and Social Psychology Review, 10(1), 20–46. https://doi.org/10.1207/s15327957pspr1001_2
Barrett, L. F., Mesquita, B., Ochsner, K. N., & Gross, J. J. (2007). The experience of emotion. Annual Review of Psychology, 58(1), 373–403.
Baveye, Y., Dellandrea, E., Chamaret, C., & Chen, L. (2015). LIRISACCEDE: A video database for affective content analysis. IEEE Transactions on Affective Computing, 6(1), 43–55.
Baveye, Y., Bettinelli, J. N., Dellandréa, E., Chen, L., & Chamaret, C. (2013). A large video database for computational models of induced emotion. In 2013 Humaine Association Conference on Affective Computing and Intelligent Interaction (pp. 13–18). IEEE.
Behnke, M., Buchwald, M., Bykowski, A., Kupiński, S., & Kaczmarek, L. D. (2022). Psychophysiology of positive and negative emotions, dataset of 1157 cases and 8 biosignals. Scientific Data, 9(1), 1–15.
Bradley, M. M., & Lang, P. J. (2000). Measuring emotion: Behavior, feeling, and physiology. In R. D. Lane & L. Nadel (Eds.), Cognitive neuroscience of emotion (pp. 242–276). Oxford University Press.
Brody, L. R., & Hall, J. A. (2000). Gender, Emotion, and Expression. In M. Lewis & J. M. Haviland-Jones (Eds.), Handbook of emotions: Part IV: Social/personality issues (2nd ed., pp. 325–414). Guilford Press.
Bylsma, L. M. (2021). Emotion context insensitivity in depression: Toward an integrated and contextualized approach. Psychophysiology, 58(2), e13715.
Cacioppo, J. T., & Gardner, W. L. (1999). Emotion. Annual Review of Psychology, 50, 191–214. https://doi.org/10.1146/annurev.psych.50.1.191
Cahill, L., Uncapher, M., Kilpatrick, C., Alkire, M. T., & Turner, J. (2004). Sex-related hemispheric lateralization of amygdala function in emotionally influenced memory: An fMRI investigation. Learning & Memory, 11, 261–266.
Carvalho, S., Leite, J., Galdo-Álvarez, S., & Gonçalves, Ó. F. (2012). The emotional movie database (EMDB): A self-report and psychophysiological study. Applied Psychophysiology and Biofeedback, 37(4), 279–294.
Christie, I. C., & Friedman, B. H. (2004). Autonomic specificity of discrete emotion and dimensions of affective space: A multivariate approach. International Journal of Psychophysiology, 51, 143–153. https://doi.org/10.1016/j.ijpsycho.2003.08.002
Correa, J. A. M., Abadi, M. K., Sebe, N., & Patras, I. (2021). AMIGOS: A dataset for affect, personality and mood research on individuals and groups. IEEE Transactions on Affective Computing, 12, 479–493.
Davidson, R. J. (1992). A prolegomenon to the structure of emotion: Gleanings from neuropsychology. Cognition and Emotion, 6, 245–268.
Davidson, R. J. (1993). Parsing affective space: Perspectives from neuropsychology and psychophysiology. Special section: Neuropsychological perspectives on components of emotional processing. Neuropsychology, 7, 464–475.
Deng, Y., Yang, M., & Zhou, R. (2017). A New standardized emotional film database for Asian culture. Frontiers in Psychology, 8, 1941. https://doi.org/10.3389/fpsyg.2017.01941
Dunn, J. R., & Schweitzer, M. E. (2005). Feeling and believing: The influence of emotion on trust. Journal of Personality and Social Psychology, 88(5), 736–748. https://doi.org/10.1037/0022-3514.88.5.736
Ekman, P., & Friesen, W. V. (1975). Unmasking the face: A guide to recognizing emotions from facial clues. Prentice-Hall.
Ekman, P., Freisen, W. V., & Ancoli, S. (1980). Facial signs of emotional experience. Journal of Personality and Social Psychology, 39(6), 1125–1134. https://doi.org/10.1037/h0077722
Ekman, P., Levenson, R. W., & Friesen, W. V. (1983). Autonomic nervous system activity distinguishes among emotions. Science, 221(4616), 1208–1210. https://doi.org/10.1126/science.6612338
Erdem, C. E., Turan, C., & Aydin, Z. (2015). BAUM-2: A multilingual audio-visual affective face database. Multimedia Tools and Applications, 74(18), 7429–7459.
Fayn, K., Willemsen, S., Muralikrishnan, R., Castaño Manias, B., Menninghaus, W., & Schlotz, W. (2022). Full throttle: Demonstrating the speed, accuracy, and validity of a new method for continuous two-dimensional self-report and annotation. Behavior Research Methods, 54(1), 350–364. https://doi.org/10.3758/s13428-021-01616-3
Feldman-Barrett, L., Robin, L., Pietromonaco, P. R., & Eyssel, K. M. (1998). Are women the more emotional sex? Evidence from emotional experiences in social context. Cognition and Emotion, 12, 555–578.
Fernández-Aguilar, L., Navarro-Bravo, B., Ricarte, J., Ros, L., & Latorre, J. M. (2019). How effective are films in inducing positive and negative emotional states? A meta-analysis. Plos One, 14(11), e0225040. https://doi.org/10.1371/journal.pone.0225040
Fernández-Aguilar, L., Lora, Y., Satorres, E., Ros, L., Melendez, J. C., & Latorre, J. M. (2021). Dimensional and discrete emotional reactivity in Alzheimer’s disease: Film clips as a research tool in dementia. Journal of Alzheimer’s Disease, 82(1), 349–360.
Fredrickson, B. L. (2013). Positive emotions broaden and build. Advances in Experimental Social Psychology, 47, 1–53.
Gabert-Quillen, C. A., Bartolini, E. E., Abravanel, B. T., & Sanislow, C. A. (2015). Ratings for emotion film clips. Behavior Research Methods, 47(3), 773–787.
Ge, Y., Zhao, G., Zhang, Y., Houston, R. J., & Song, J. (2019). A standardised database of Chinese emotional film clips. Cognition and Emotion, 33(5), 976–990.
Gerrards-Hesse, A., Spies, K., & Hesse, F. W. (1994). Experimental inductions of emotional states and their effectiveness: A review. British Journal of Psychology, 85(1), 55–78.
Gilman, T. L., Shaheen, R., Nylocks, K. M., Halachoff, D., Chapman, J., Flynn, J. J., Matt, L. M., & Coifman, K. G. (2017). A film set for the elicitation of emotion in research: A comprehensive catalog derived from four decades of investigation. Behavior Research Methods, 49(6), 2061–2082.
Gottman, J. M., Coan, J., Carrere, S., & Swanson, C. (1998). Predicting marital happiness and stability from newlywed interactions. Journal of Marriage and the Family, 5–22.
Gray, J. R. (2001). Emotional modulation of cognitive control: Approach-withdrawal states double-dissociate spatial from verbal two-back task performance. Journal of Experimental Psychology: General, 130, 436–452.
Gross, J. J., & Levenson, R. W. (1995). Emotion elicitation using films. Cognition & Emotion, 9(1), 87–108.
Harmon-Jones, E., Harmon-Jones, C., & Summerell, E. (2017). On the importance of both dimensional and discrete models of emotion. Behavioral Sciences, 7(4), 66. https://doi.org/10.3390/bs7040066
Hasnul, M. A., Aziz, N. A. A., Alelyani, S., Mohana, M., & Aziz, A. A. (2021). Electrocardiogram-based emotion recognition systems and their applications in healthcare—a review. Sensors, 21(15), 5015.
Herring, D. R., Burleson, M. H., Roberts, N. A., & Devine, M. J. (2011). Coherent with laughter: Subjective experience, behavior, and physiological responses during amusement and joy. International Journal of Psychophysiology, 79(2), 211–218.
Hewig, J., Hagemann, D., Seifert, J., Gollwitzer, M., Naumann, E., & Bartussek, D. (2005). A revised film set for the induction of basic emotions. Cognition & Emotion, 19(7), 1095–1109. https://doi.org/10.1080/02699930541000084
Hsieh, D. L., & Hsiao, T. C. (2016). Respiratory sinus arrhythmia reactivity of internet addiction abusers in negative and positive emotional states using film clips stimulation. Biomedical Engineering Online, 15(1), 1–18.
Izard, C. E. (1977). Human emotions. Plenum Press.
Jenkins, L. M., & Andrewes, D. G. (2012). A new set of standardised verbal and non-verbal contemporary film stimuli for the elicitation of emotions. Brain Impairment, 13(2), 212–227.
Kalawski, J. P. (2010). Is tenderness a basic emotion? Motivation and Emotion, 34(2), 158–167.
Kelly, J. R., & Hutson-Corneaux, S. L. (1999). Gender emotion stereotypes are context specific. Sex Roles, 40, 107–120.
Koelstra, S., Muhl, C., Soleymani, M., Lee, J.-S., Yazdani, A., Ebrahimi, T., Pun, T., Nijholt, A., & Patras, I. (2011). DEAP: A database for emotion analysis; using physiological signals. IEEE Transactions on Affective Computing, 3(1), 18–31.
Kring, A. M., & Gordon, A. H. (1998). Sex differences in emotion: Expression, experience, and physiology. Journal of Personality and Social Psychology, 74(3), 686–703. https://doi.org/10.1037/0022-3514.74.3.686
Lang, P. J. (1980). Behavioral treatment and bio-behavioral assessment: Computer applications. In J. B. Sidowski, J. H. Johnson, & T. A. Williams (Eds.), Technology in mental health care delivery systems (pp. 119–137). Ablex Publishing.
Lang, P. J., Greenwald, M. K., Bradley, M. M., & Hamm, A. O. (1993). Looking at pictures: Affective, facial, visceral, and behavioral reactions. Psychophysiology, 30(3), 261–273. https://doi.org/10.1111/j.1469-8986.1993.tb03352.x
Laukka, P., & Elfenbein, H. A. (2021). Cross-cultural emotion recognition and in-group advantage in vocal expression: A meta-analysis. Emotion Review, 13(1), 3–11.
Levenson, R. W., Ekman, P., & Friesen, W. V. (1990). Voluntary facial action generates emotion-specific autonomic nervous system activity. Psychophysiology, 27, 363–384. https://doi.org/10.1111/j.1469-8986.1990.tb02330.x
Liang, Y.-C., Hsieh, S., Weng, C.-Y., & Sun, C.-R. (2013). Taiwan corpora of Chinese emotions and relevant psychophysiological data - standard Chinese emotional film clips database and subjective evaluation normative data. Chinese Journal of Psychology, 55(4), 601–621.
Malandrakis, N., Potamianos, A., Evangelopoulos, G., & Zlatintsi, A. (2011). A supervised approach to movie emotion tracking. Paper presented at the IEEE International Conference on Acoustics, Speech and Signal Processing, Prague, Czech Republic.
McHugo, G. J., Smith, C. A., & Lanzetta, J. T. (1982). The structure of self-reports of emotional responses to film segments. Motivation & Emotion, 6(4), 365–385.
Mesquita, B., & Haire, A. (2004). Emotion and culture. Encyclopedia of Applied Psychology, 1, 731–737.
Mihalache, S., & Burileanu, D. (2021). Dimensional models for continuous-to-discrete affect mapping in speech emotion recognition. University Politehnica of Bucharest Scientific Bulletin, Series C, 83(4), 137–148.
Nasoz, F., Alvarez, K., Lisetti, C. L., & Finkelstein, N. (2004). Emotion recognition from physiological signals using wireless sensors for presence technologies. Cognition, Technology & Work, 6(1), 4–14.
Nowicki, S., Jr., & Duke, M. P. (1994). Individual differences in the nonverbal communication of affect-the Diagnostic Analysis of Nonverbal Accuracy Scale. Journal of Nonverbal Behavior, 18(1), 9–35.
Philippot, P. (1993). Inducing and assessing differentiated emotion-feeling states in the laboratory. Cognition & Emotion, 7(2), 171–193.
Plutchik, R. (1980). Emotion: A psychobioevolutionary synthesis. Harper & Row.
Rahman, M. M., Sarkar, A. K., Hossain, M. A., Hossain, M. S., Islam, M. R., Hossain, M. B., … & Moni, M. A. (2021). Recognition of human emotions using EEG signals: A review. Computers in Biology and Medicine, 136, 104696.
Rainville, P., Bechara, A., Naqvi, N., & Damasio, A. R. (2006). Basic emotions are associated with distinct patterns of cardiorespiratory activity. International Journal of Psychophysiology, 61(1), 5–18. https://doi.org/10.1016/j.ijpsycho.2005.10.024
Ravindran, N., Zhang, X., Green, L. M., Gatzke-Kopp, L. M., Cole, P. M., & Ram, N. (2021). Concordance of mother-child respiratory sinus arrythmia is continually moderated by dynamic changes in emotional content of film stimuli. Biological Psychology, 161, 108053.
Rothman, A. D., & Nowicki, S. J., Jr. (2004). A measure of the ability to identify emotion in children’s tone of voice. Journal of Nonverbal Behavior, 28(2), 67–92.
Rottenberg, J., Kasch, K. L., Gross, J. J., & Gotlib, I. H. (2002). Sadness and amusement reactivity differentially predict concurrent and prospective functioning in major depressive disorder. Emotion, 2(2), 135–146.
Rottenberg, J., Ray, R. D., & Gross, J. J. (2007). Emotion elicitation using films. In J. A. Coan & J. J. B. Allen (Eds.), Handbook of emotion elicitation and assessment (pp. 9–28). Oxford University Press.
Russell, J. A. (1980). A circumplex model of affect. Journal of Personality and Social Psychology, 39, 1161–1178.
Russell, J. A. (2003). Core affect and the psychological construction of emotion. Psychological Review, 110(1), 145–172. https://doi.org/10.1037/0033-295x.110.1.145
Saganowski, S., Komoszyńska, J., Behnke, M., Perz, B., Kunc, D., Klich, B., … & Kazienko, P. (2022). Emognition dataset: emotion recognition with self-reports, facial expressions, and physiology using wearables. Scientific data, 9(1), 1–11.
Samson, A. C., Kreibig, S. D., Soderstrom, B., Wade, A. A., & Gross, J. J. (2016). Eliciting positive, negative and mixed emotional states: A film library for affective scientists. Cognition and Emotion, 30(5), 827–856. https://doi.org/10.1080/02699931.2015.1031089
Sauter, D. A., Eisner, F., Ekman, P., & Scott, S. K. (2010). Cross-cultural recognition of basic emotions through nonverbal emotional vocalizations. Proceedings of the National Academy of Sciences of the United States of America, 107(6), 2408–2412. https://doi.org/10.1073/pnas.0908239106
Schaefer, A., Nils, F., Sanchez, X., & Philippot, P. (2010a). Assessing the effectiveness of a large database of emotion-eliciting films: A new tool for emotion researchers. Cognition & Emotion, 24(7), 1153–1172.
Schaefer, A., Nils, F., Sanchez, X., & Philippot, P. (2010b). Assessing the effectiveness of a large database of emotion-eliciting films: A new tool for emotion researchers. Cognition and Emotion, 24(7), 1153–1172. https://doi.org/10.1080/02699930903274322
Schmidt, L. A., & Trainor, L. J. (2001). Frontal brain electrical activity (EEG) distinguishes valence and intensity of musical emotions. Cognition and Emotion, 15(4), 487–500. https://doi.org/10.1080/02699930126048
Scott, J. C. (1930). Systolic blood-pressure fluctuations with sex, anger, and fear. Comparative Psychology, 10(2), 97–114.
Shiota, M. N., Campos, B., Keltner, D., & Hertenstein, M. J. (2004). Positive emotion and the regulation of interpersonal relationships. In P. Philippot & R. S. Feldman (Eds.), The regulation of emotion (pp. 127–155). Erlbaum.
Simons, R. F., Detenber, B. H., Cuthbert, B. N., Schwartz, D. D., & Reiss, J. E. (2003). Attention to television : Alpha power and its relationship to image motion and emotional content. Media Psychology, 5(3), 283–301. https://doi.org/10.1207/S1532785XMEP0503
Soleymani, M., Lichtenauer, J., Pun, T., & Pantic, M. (2011). A multimodal database for affect recognition and implicit tagging. IEEE Transactions on Affective Computing, 3(1), 42–55.
Trnka, M., Darjaa, S., Ritomský, M., Sabo, R., Rusko, M., Schaper, M., & Stelkens-Kobsch, T. H. (2021). Mapping discrete emotions in the dimensional space: An acoustic approach. Electronics, 10(23), 2950.
Uhrig, M. K., Trautmann, N., Baumgartner, U., Treede, R.-D., Henrich, F., Hiller, W., & Marschall, S. (2016). Emotion elicitation: A comparison of pictures and films. Frontiers in Psychology, 7(180), 1–12. https://doi.org/10.3389/fpsyg.2016.00180
Vytal, K., & Hamann, S. (2010). Neuroimaging support for discrete neural correlates of basic emotions: A voxel-based meta-analysis. Journal of Cognitive Neuroscience, 22(12), 2864–2885. https://doi.org/10.1162/jocn.2009.21366
Wang, T., Zhao, Y., Xu, Y., & Zhu, Z. (2021). Comparison of response to Chinese and Western videos of mental-health-related emotions in a representative Chinese sample. PeerJ, 9, e10440–e10440. https://doi.org/10.7717/peerj.10440
Wang, Y., Song, W., Tao, W., Liotta, A., Yang, D., Li, X., … & Zhang, W. (2022). A systematic review on affective computing: Emotion models, databases, and recent advances. Information Fusion, 83, 19–52. https://doi.org/10.48550/arXiv.2203.06935
Watson, D., Clark, L. A., & Tellegen, A. (1988). Development and validation of brief measures of positive and negative affect: The PANAS scales. Journal of Personality & Social Psychology, 54(6), 1063–1070.
Westermann, R., Spies, K., Stahl, G., & Hesse, F. W. (1996). Relative effectiveness and validity of mood induction procedures: A meta-analysis. European Journal of Social Psychology, 26(4), 557–580.
Witvliet, C. V. O., & Vrana, S. R. (1995). Psychophysiological responses as indices of affective dimensions. Psychophysiology, 32, 436–443.
Xu, P., Huang, Y., & Luo, Y. (2010). Establishment and assessment of native Chinese affective video system. Chinese Mental Health Journal, 24(7), 551–554+561.
Zupan, B., & Babbage, D. R. (2017). Film clips and narrative text as subjective emotion elicitation techniques. The Journal of Social Psychology, 157(2), 194–210. https://doi.org/10.1080/00224545.2016.1208138
Zupan, B., & Eskritt, M. (2020). Eliciting emotion ratings for a set of film clips: A preliminary archive for research in emotion. The Journal of Social Psychology, 160(6), 768–789.
Acknowledgements
We thank all the participants in the study. We thank LetPub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript.
Author information
Authors and Affiliations
Contributions
XYW and SLC designed the study, XYW analyzed the data and wrote the manuscript, HLZ helped with the writing of the introduction, XYW, HLZ, ZBZ, WCJ, JWF, WCX and YFX prepared the experimental materials and collected the data, ZBZ wrote the code of the experimental program, JWF contacted the DECAF staff and obtained authorization, SLC and HC supervised the study and revised the manuscript.
Corresponding author
Ethics declarations
Ethical approval and consent to participate
The study was approved by the Institutional Review Board (IRB) of the Department of psychology and behavioral science, Zhejiang University (IRB approval code: [2022]059). Informed consent was obtained from all individual participants included in the study.
Conflict of interest
The authors have no relevant financial or non-financial interests to disclose. The film clip set (DECAF; Abadi et al., 2015) examined in this study was authorized to be used by the DECAF authors.
Additional information
Publisher's note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Wang, X., Zhou, H., Xue, W. et al. The hybrid discrete–dimensional frame method for emotional film selection. Curr Psychol 42, 30077–30092 (2023). https://doi.org/10.1007/s12144-022-04038-2
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12144-022-04038-2