Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

An Effective Temperature Profile Prediction in Additive Manufacturing Process Using Fractional GNU Global Herding Optimization-based Deep Learning Technique

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

Material is constructed in three dimensions using the additive manufacturing (AM) paradigm, which involves layer-by-layer depositing material to a computer-aided conceptual model. Due to its ability to produce functional components with complicated geometries quickly and easily utilizing techniques like laser metal deposition that would be challenging to produce with traditional machining, AM has gained a lot of popularity in the past ten years. This research designs and develops a key component of a scientific technique for creating data-driven model-based real-time control systems. The database is created and time-dependent heat equations are solved using finite element methods. The proposed model employs the fractional gnu global herding optimization algorithm, which successively uses temperatures of previous voxels and laser details as inputs to anticipate temperatures of following voxels, to solve problems with extremely unpredictable solutions. The fractional gnu global herding optimization-based neural network (FFGHO-NN) model achieved performance with the lowest error values using database1 of 3.787, 29.932%, 5.675, and 2.382, respectively, for the metrics MAE, MAPE, MSE, RMSE for database 2 the values are 14.59, 26.52%, 11.62, and 3.41.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhu, Q., Liu, Z., Yan, J.: Machine learning for metal additive manufacturing: predicting temperature and melt pool fluid dynamics using physics-informed neural networks. Comput. Mech. 67(2), 619–635 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  2. Roy, M., Wodo, O.: Data-driven modeling of thermal history in additive manufacturing. Addit. Manuf. 32, 101017 (2020)

    Google Scholar 

  3. Ning, J., Nguyen, V., Liang, S.Y.: Analytical modeling of machining forces of ultra-fine-grained titanium. Int. J. Adv. Manuf. Technol. 101, 1–10 (2018)

    Google Scholar 

  4. Danish, M., Ginta, T.L., Habib, K., Abdul Rani, A.M., Saha, B.B.: Effect of cryogenic cooling on the heat transfer during turning of AZ31C magnesium alloy. Heat Transf. Eng. 40, 1–10 (2018)

    Google Scholar 

  5. Feng, Y., Lu, Y.T., Lin, Y.F., Hung, T.P., Hsu, F.C., Lin, C.F., Lu, Y.C., Liang, S.Y.: Inverse analysis of the cutting force in laser-assisted milling on Inconel 718. Int. J. Adv. Manuf. Technol. 96, 905–914 (2018)

    Article  Google Scholar 

  6. Li, F., Li, X., Qin, X., Rong, Y.K.: Study on the plane induction heating process strengthened by magnetic flux concentrator based on response surface methodology. J. Mech. Sci. Technol. 32, 2347–2356 (2018)

    Article  Google Scholar 

  7. Ning, J., Liang, S.Y.: Predictive modeling of machining temperatures with force–temperature correlation using cutting mechanics and constitutive relation. Materials 12(2), 284 (2019)

    Article  Google Scholar 

  8. Yan, H., et al.: Stress and deformation evaluation of the subarea scanning effect in direct laser-deposited Ti–6Al–4V. Int. J. Adv. Manuf. Technol. 97(1–4), 915–926 (2018)

    Article  Google Scholar 

  9. Ren, K., Chew, Y., Zhang, Y.F., Fuh, J.Y.H., Bi, G.J.: Thermal field prediction for laser scanning paths in laser aided additive manufacturing by physics-based machine learning. Comput. Methods Appl. Mech. Eng. 362, 112734 (2020)

    Article  Google Scholar 

  10. Zhao, X., et al.: Numerical modeling of the thermal behavior and residual stress in the direct metal laser sintering process of titanium alloy products. Addit. Manuf. 14, 126–136 (2017)

    Google Scholar 

  11. Mirkoohi, E., Sievers, D.E., Garmestani, H., Liang, S.Y.: Thermo-mechanical modeling of thermal stress in metal additive manufacturing considering elastoplastic hardening. CIRP J. Manuf. Sci. Technol. 28, 52–67 (2020)

    Article  Google Scholar 

  12. Ning, J., Sievers, D.E., Garmestani, H., Liang, S.Y.: Analytical modeling of in-process temperature in powder feed metal additive manufacturing considering heat transfer boundary condition. Int. J. Precis. Eng. Manuf. Green Technol. 7(3), 585–593 (2020)

    Article  Google Scholar 

  13. Zobeiry, N., Humfeld, K.D.: A physics-informed machine learning approach for solving heat transfer equation in advanced manufacturing and engineering applications. Eng. Appl. Artif. Intell. 101, 104232 (2021)

    Article  Google Scholar 

  14. Qasim, A., Nisar, S., Shah, A., Khalid, M.S., Sheikh, M.A.: Optimization of process parameters for machining of AISI-1045 steel using Taguchi design and ANOVA. Simul. Model. Pract. Theory 59, 36–51 (2015)

    Article  Google Scholar 

  15. Zeng, W., Liu, G.R.: Smoothed finite element methods (S-FEM): an overview and recent developments. Arch. Comput. Methods Eng. 25(2), 397–435 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Liu, Z., Wu, C., Koishi, M.: Transfer learning of deep material network for seamless structure-property predictions. Comput. Mech. 64(2), 451–465 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  17. Liu, Z., Wu, C., Koishi, M.: A deep material network for multiscale topology learning and accelerated nonlinear modeling of heterogeneous materials. Comput. Methods Appl. Mech. Eng. 345, 1138–1168 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  18. Liu, Z., Wu, C.: Exploring the 3d architectures of deep material network in data-driven multiscale mechanics. J. Mech. Phys. Solids 127, 20–46 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  19. Liu, Z., Kafka, O., Yu, C., Liu, W.: Data-driven self-consistent clustering analysis of heterogeneous materials with crystal plasticity. In: Onate, E., Peric, D., de Souza, N.E., Chiumenti, M. (eds.) Advances in computational plasticity, pp. 221–242. Springer (2018)

    Chapter  MATH  Google Scholar 

  20. Liu, Z., Fleming, M., Liu, W.: Microstructural material database for self-consistent clustering analysis of elastoplastic strain softening materials. Comput. Methods Appl. Mech. Eng. 330, 547–577 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. Liu, Z., Bessa, M., Liu, W.: Self-consistent clustering analysis: an efficient multi-scale scheme for inelastic heterogeneous materials. Comput. Methods Appl. Mech. Eng. 306, 319–341 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Coveney, P.V., Dougherty, E.R., Highfield, R.R.: Big data need big theory too. Phil. Trans. R. Soc. A 374(2080), 20160153 (2016)

    Article  Google Scholar 

  23. Bishop, C.M.: Neural networks and their applications. Rev. Sci. Instrum. 65(6), 1803–1832 (1994)

    Article  Google Scholar 

  24. Song, X., Feih, S., Zhai, W., Sun, C.N., Li, F., Maiti, R., Wei, J., Yang, Y., Oancea, V., Brandt, L.R., Korsunsky, A.M.: Advances in additive manufacturing process simulation: residual stresses and distortion predictions in complex metallic components. Mater. Des. 193, 108779 (2020)

    Article  Google Scholar 

  25. Chen, S., Wang, F., Yildizbasi, A.: A new technique for optimising of a PEMFC based CCHP system. Int. J. Ambient Energy 43(1), 2653–2661 (2022)

    Article  Google Scholar 

  26. Ali, M.A., Balasubramanian, K., Krishnamoorthy, G.D., Muthusamy, S., Pandiyan, S., Panchal, H., Mann, S., Thangaraj, K., El-Attar, N.E., Abualigah, L., Elminaam, A.: Classification of glaucoma based on elephant-herding optimization algorithm and deep belief network. Electronics 11(11), 1763 (2022)

    Article  Google Scholar 

  27. Amali, D., Dinakaran, M.: Wildebeest herd optimization: a new global optimization algorithm inspired by wildebeest herding behaviour. J. Intell. Fuzzy Syst. 37(6), 8063–8076 (2019)

    Article  Google Scholar 

  28. GAMMA dataset https://paperswithcode.com/dataset/gamma-challenge (2022)

  29. FEM dataset https://www.kaggle.com/datasets/daalgi/fem-simulations (2018)

  30. Willmott, C.J., Matsuura, K.: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim. Res. 30(1), 79–82 (2005)

    Article  Google Scholar 

  31. De Myttenaere, A., Golden, B., Le Grand, B., Rossi, F.: Mean absolute percentage error for regression models. Neurocomputing 192, 38–48 (2016)

    Article  Google Scholar 

  32. Chai, T., Draxler, R.R.: Root mean square error (RMSE) or mean absolute error (MAE)?–Arguments against avoiding RMSE in the literature. Geosci. Model Dev. 7(3), 1247–1250 (2014)

    Article  Google Scholar 

  33. Paul, A., Mozaffar, M., Yang, Z., Liao, W.K., Choudhary, A., Cao, J. and Agrawal, A.: A real-time iterative machine learning approach for temperature profile prediction in additive manufacturing processes. In: 2019 IEEE International Conference on Data Science and Advanced Analytics (DSAA), pp. 541–550. IEEE (2019)

  34. Ozel, T., Karpat, Y.: Identification of constitutive material model parameters for high-strain rate metal cutting conditions using evolutionary computational algorithms. Mater. Manuf. Process 22, 659–667 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaikh Tauseef Ahmed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 32 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, S.T., Lokhande, A.D. & Shafik, R.S. An Effective Temperature Profile Prediction in Additive Manufacturing Process Using Fractional GNU Global Herding Optimization-based Deep Learning Technique. Int J Interact Des Manuf 17, 3069–3084 (2023). https://doi.org/10.1007/s12008-023-01349-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-023-01349-x

Keywords

Navigation