Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

A hybrid optimization model for resource allocation in OFDM-based cognitive radio system

  • Special Issue
  • Published:
Evolutionary Intelligence Aims and scope Submit manuscript

Abstract

Cognitive radio (CR) system has been considered as the key technology for the mobile computing and wireless communication in future. However, the main challenge of the CR system is the allocation of resources with minimized transmission power at an enhanced rate of transmission. This paper proposes the hybrid method, which is the combination of Grey Wolf Optimization (GWO) and Group Search Optimization (GSO), to allocate the resources in the CR system in an optimal manner. It simulates the GWOGS-based CR system relying on the orthogonal frequency division multiplexing (OFDM), to allocate the recourses optimally. After attaining the respective simulation, it compares the performance of the GWOGS to the conventional algorithms like Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Artificial Bee Colony (ABC), Firefly (FF), GSO, GWO, and SOAP. Moreover, it provides the valuable comparative analysis in terms of convergence, ranking, cost and impact of orthogonality. In addition, it reveals the statistical analysis of the entire benchmark algorithm to attain the optimum result. Thus the experimental result, affirms the challenging performance of the proposed method against the conventional algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Ghazzai H, Yaacoub E, Alouini MS, Dayya AA (2014) Optimized smart grid energy procurement for LTE networks using evolutionary algorithms. IEEE Trans Veh Technol 63(9):4508–4519

    Article  Google Scholar 

  2. Hayward SS, Palacios EG (2014) Channel time allocation PSO for gigabit multimedia wireless networks. IEEE Trans Multimed 16(3):828–836

    Article  Google Scholar 

  3. Monteiro VF, Sousa DA, Maciel TF, Lima FRM, Rodrigues EB, Cavalcanti FRP (2015) Radio resource allocation framework for quality of experience optimization in wireless networks IEEE Netw 29(6):33–39

    Article  Google Scholar 

  4. Liu A, Lau VKN, Ruan L, Chen J, Xiao D (2014) Hierarchical radio resource optimization for heterogeneous networks with enhanced inter-cell interference coordination (eICIC). IEEE Trans Signal Process 62(7):1684–1693

    Article  MathSciNet  Google Scholar 

  5. Li Y, Zhu X, Liao C, Wang C, Cao B (2015) Energy efficiency maximization by jointly optimizing the positions and serving range of relay stations in cellular networks 64(6):2551–2560

  6. Hasu V (2007) Radio Resource management in wireless communication: beamforming, transmission power control, and rate allocation. Helsinki University of Technology Control Engineering Laboratory

  7. Zander J (2002) Radio resource management in future wireless networks—requirements and limitations. IEEE Commun Mag 35(8):30–36

    Article  Google Scholar 

  8. Osseiran A et al (2014) Scenarios for 5G mobile and wireless communications: the vision of the METIS project. IEEE Commun Mag 52(5):26–35

    Article  Google Scholar 

  9. Khoja JA, Shalash MA, Prabhu V (2002) Dynamic system simulator for the modelling of CDMA systems. In: Proceedings of the International Mobility and Wireless Access Workshop, pp. 50–58

  10. Hsu YH, Wang K, Tseng YC (2014) Efficient cooperative access class barring with load balancing and traffic adaptive radio resource management for M2M communications over LTE-A. Comput Netw 73:268–281

    Article  Google Scholar 

  11. Soldani D (2005) QoS management in UMTS terrestrial radio access FDD networks. PhD Thesis, Helsinki University of Technology

  12. Glausnov AA, Almeida T, Barberesi A, Barberis S, Bertotto P, Pinto FC, Casadevall F et al (2005) Final report on the evaluation of RRM/CRRM algorithms. Inf Soc Technol pp 1–317.

  13. Mino G, Barolli L, Xhafa F, Durresi A, Koyama A (2009) Implementation and performance evaluation of two fuzzy-based handover systems for wireless cellular networks. Mobile Inf Syst 5(4):339–361

    Article  Google Scholar 

  14. Ciaschetti G, Corsini L, Detti P, Giambene G (2007) Packet scheduling in third generation mobile systems with UTRA-TDD air interface. Ann Oper Res 15(1):93–114

    Article  MathSciNet  Google Scholar 

  15. Rejeb B, Nasser N, Tabbane S (2014) A novel resource allocation scheme for LTE network in the presence of mobility. J Netw Comput Appl 46:352–361

    Article  Google Scholar 

  16. Kejik P, Hanus S (2011) Simulator for radio resources management functions in CDMA systems. Simul Model Pract Theory 19(2):752–761

    Article  Google Scholar 

  17. Siraj S, Gupta AK, Badgujar R (2012) Network simulation tools survey. Int J Adv Res Comput Commun Eng 1(4):201–210

    Google Scholar 

  18. Laya A, Alonso L, Zarate JA (2014) Is the random access channel of LTE and LTE-A suitable for M2M communications? A survey of alternatives. IEEE Commun Surv Tutorials 16(1):4–16

    Article  Google Scholar 

  19. 3GPP TS 22.011 V9.4.0, 3rd Generation Partnership Project Technical Specification Group Services and System Aspects Service Accessibility (Release 9), June 2010

  20. Hyytia E, Virtamo J (2007) Random way point mobility model in cellular networks. Wirel Netw 13(2):177–188

    Article  Google Scholar 

  21. Huang JW, Krishnamurthy V (2011) Cognitive base stations in LTE/3GPP femtocells: a correlated equilibrium game-theoretic approach. IEEE Trans Commun 59(12):3485–3493

    Article  Google Scholar 

  22. AlQerm I, Shihada B, Shin KG (2013) Enhanced cognitive Radio Resource Management for LTE systems. 2013 IEEE 9th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), pp 565–570

  23. Karunakaran P, Wagner T, Scherb A, Gerstacker W (2014) Sensing for spectrum sharing in cognitive LTE-A cellular networks. 2014 IEEE Wireless Communications and Networking Conference (WCNC), pp 565–570,

  24. Mitola J, Maguire GQ (1999) Cognitive radio: making software radios more personal. IEEE Commun Personal 6(4):13–18

    Article  Google Scholar 

  25. Saatsakis A, Tsagkaris K, von Hugo D, Siebert M, Rosenberger M, Demestichas P (2008) Cognitive radio resource management for improving the efficiency of lte network segments in the wireless b3g world. In New Frontiers in Dynamic Spectrum Access Networks, DySPAN 3rd IEEE Symposium on, pp. 1–5

  26. Yucek T, Arslan H (2009) A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Communications Surveys & Tutorials

  27. Almalfouh SM, Stuber GL (2011) Interference-aware radio resource allocation in OFDMA-based cognitive radio networks. IEEE Trans Veh Technol 60(4):1699–1713

    Article  Google Scholar 

  28. Li W, Zhang Y, So A, Win M (2010) Slow adaptive OFDMA systems through chance constrained programming. IEEE Trans Signal Process 58(7):3858–3869

    Article  MathSciNet  Google Scholar 

  29. Goldsmith AJ, Chua S-G (Oct. 1997) Variable-rate variable-power MQAM for fading channels. IEEE Trans Commun 45(10):1218–1230

    Article  Google Scholar 

  30. Setoodeh P, Haykin S (2009) Robust transmit power control for cognitive radio. Proc IEEE 97(5):915–939

    Article  Google Scholar 

  31. Miao G, Himayat N, Li G (2010) Energy-efficient link adaptation in frequency-selective channels. IEEE Trans Commun 58(2):545–554

    Article  Google Scholar 

  32. He S, Wu QH, Saunders JR (2009) Group search optimizer: an optimization algorithm inspired by animal searching behavior. IEEE Trans Evol Comput 13(5):973–990

    Article  Google Scholar 

  33. Cui S, Goldsmith A, Bahai A (2005) Energy-constrained modulation optimization. IEEE Trans Wirel Commun 4(5):2349–2360

    Google Scholar 

  34. Tian Z, Leus G, Lottici V (2011) Joint dynamic resource allocation and waveform adaptation for cognitive networks. IEEE J Selected Areas Commun 29(2):423–454

    Google Scholar 

  35. Sardellitti S, Barbarossa S (2013) Joint optimization of collaborative sensing and radio resource allocation in small-cell networks. IEEE Trans Signal Process 61(18):4506–4520

    Article  MathSciNet  Google Scholar 

  36. Xie R, Yu FR, Ji H (2012) Dynamic resource allocation for heterogeneous services in cognitive radio networks with imperfect channel sensing. IEEE Trans Veh Technol 61(2):770–780

    Article  Google Scholar 

  37. Hasegawa M, Hirai H, Nagano K, Harada H, Aihara K (2014) Optimization for centralized and decentralized cognitive radio networks. Proc IEEE 102(4):574–584

    Article  Google Scholar 

  38. Chen B, Zhao M, Zhang L, Lei M (2015) Resource optimisation using bandwidthpower product for multiple-input multipleoutput orthogonal frequency-division multiplexing access system in cognitive radio networks. IET Commun 9(14):1710–1720

    Article  Google Scholar 

  39. Mallick S, Devarajan R, Loodaricheh RA, Bhargava VK (2015) Robust resource optimization for cooperative cognitive radio networks with imperfect CSI. IEEE Trans Wirel Commun 14(2):907–920

    Article  Google Scholar 

  40. Tachwali Y, Lo BF, Akyildiz IF, Agust R (2013) Multiuser resource allocation optimization using bandwidth-power product in cognitive radio networks. IEEE J Selected Areas Commun 31(3):451–463

    Article  Google Scholar 

  41. Damasso E, Correia LM (eds) (1999) Digital mobile radio towards future generation—COST 231 Final Report. COST Office, Brussels

    Google Scholar 

  42. Seyedali Mirjalili SM, Mirjalili, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Article  Google Scholar 

  43. Kabita Agarwal and Arun Agarwal (2014) The next generation mobile wireless cellular networks—4G and beyond. Am J Electr Electron Eng 2(03):92–97

    Article  Google Scholar 

  44. Dillip Dash A, Agarwal, Agarwal K (2013) Performance analysis of OFDM based DVB-T over diverse. Wireless Commun Channels 6(01):131–141

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sameer Suresh Nanivadekar.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nanivadekar, S.S., Kolekar, U.D. A hybrid optimization model for resource allocation in OFDM-based cognitive radio system. Evol. Intel. 15, 825–836 (2022). https://doi.org/10.1007/s12065-018-0173-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12065-018-0173-1

Keywords

Navigation