Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Simple polytopes without small separators

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We show that by cutting off the vertices and then the edges of neighborly cubical polytopes, one obtains simple 4-dimensional polytopes with n vertices such that all separators of the graph have size at least Ω(n/log3/2 n). This disproves a conjecture by Kalai from 1991/2004.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. M. Bayer and L. J. Billera, Generalized Dehn-Sommerville relations for polytopes, spheres and Eulerian partially ordered sets, Inventiones Math. 79 (1985), 143–157.

    Article  MathSciNet  MATH  Google Scholar 

  2. B. Bollobas, Combinatorics, Cambridge University Press, Cambridge, 1986.

    MATH  Google Scholar 

  3. G. Ewald and G. C. Shephard, Stellar subdivisions of boundary complexes of convex polytopes, Math. Annalen 210 (1974), 7–16.

    Article  MathSciNet  MATH  Google Scholar 

  4. L. H. Harper, Optimal numberings and isoperimetric problems on graphs, J. Combinatorial Theory 1 (1966), 385–393.

    Article  MathSciNet  MATH  Google Scholar 

  5. L. H. Harper, Global methods for combinatorial isoperimetric problems, Cambridge University Press, Cambridge, 2004.

    Book  MATH  Google Scholar 

  6. M. Joswig and G. M. Ziegler, Neighborly cubical polytopes, Discrete Comput. Geometry (Grünbaum Festschrift: G. Kalai and V. Klee, eds.) 24 (2000), 325–344.

    Google Scholar 

  7. G. Kalai, The diameter of graphs of convex polytopes and f-vector theory, in Applied Geometry and Discrete Mathematics — The Victor Klee Festschrift (P. Gritzmann and B. Sturmfels, eds.), DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Vol. 4, Amer. Math. Soc., Providence, RI, 1991, pp. 387–411.

    Chapter  Google Scholar 

  8. G. Kalai, Polytope skeletons and paths, in Handbook of Discrete and Computational Geometry (J. E. Goodman and J. O’Rourke, eds.), CRC Press, Boca Raton, second ed., 2004, First edition 1997, pp. 455–476.

    Google Scholar 

  9. R. J. Lipton and R. E. Tarjan, A separator theorem for planar graphs, SIAM J. Applied Math. 36 (1979), 177–189.

    Article  MathSciNet  MATH  Google Scholar 

  10. G. L. Miller, S.-H. Teng, W. Thurston and S. A. Vavasis, Separators for sphere-packings and nearest neighbor graphs, J. ACM 44 (1997), 1–29.

    Article  MathSciNet  MATH  Google Scholar 

  11. G. L. Miller and W. Thurston, Separators in two and three dimensions, in Proc. 22nd Ann. ACM Symp. Theory Computing (Baltimore MD, May 1990) (New York), ACM, pp. 300–309.

    Google Scholar 

  12. R. Sanyal and G. M. Ziegler, Construction and analysis of projected deformed products, Discrete Comput. Geometry 43 (2010), 412–435.

    Article  MathSciNet  MATH  Google Scholar 

  13. J. Spencer and L. Florescu, Asymptopia, Student Math. Library, Vol. 71, Amer. Math. Soc., Providence, RI, 2014.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lauri Loiskekoski.

Additional information

For Gil Kalai on the occasion of his sixtieth birthday

The first author was funded by DFG through the Berlin Mathematical School. Research by the second author was supported by the DFG Collaborative Research Center TRR 109 “Discretization in Geometry and Dynamics”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loiskekoski, L., Ziegler, G.M. Simple polytopes without small separators. Isr. J. Math. 221, 731–739 (2017). https://doi.org/10.1007/s11856-017-1572-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-017-1572-1

Navigation