Abstract
Gait is a novel biometric feature that offers human identification at a distance and without physical interaction with the imaging device. Moreover, it performs well even in low resolution which makes it ideal for use in numerous human identification applications, e.g.,visual surveillance, monitoring and access control systems. Most existing gait-based human identification solutions extract human body silhouettes, contours or shapes from the images and construct gait features. Therefore, the performance of such algorithms highly depends upon the accuracy of human body segmentation, which is still a challenging problem in the literature. In this paper, we propose a new gait recognition algorithm which uses the spatial and temporal motion characteristics of human gait for individual identification without needing the silhouette extraction. The proposed algorithm extracts a set of spatiotemporal local descriptors from the gait video sequences. The extracted descriptors are encoded using the Fisher vector encoding and Gaussian mixture model-based codebook. The encoded features are classified using a simple linear support vector machine to recognize the individuals. The proposed gait recognition method is evaluated on five widely used gait databases, including indoor (CMU MoBo, CASIA-B) and outdoor (NLPR, CASIA-C, TUM GAID) gait databases. The results reveal that our method showed excellent performance on all five databases and outperformed the state-of-the-art gait recognition approaches.
Similar content being viewed by others
References
Alotaibi, M., Mahmood, A.: Reducing covariate factors of gait recognition using feature selection and dictionary-based sparse coding. Signal Image Video Process. 11(6), 1131–1138 (2017)
Bashir, K., Xiang, T., Gong, S.: Gait recognition using gait entropy image. In: IET ICDP, pp. 1–6 (2009)
Bouchrika, I., Nixon, M.: Model-based feature extraction for gait analysis and recognition. In: IEEE ICCV, pp. 150–160 (2007)
Castro, F., Marín-Jiménez, M., Guil, N.: Multimodal features fusion for gait, gender and shoes recognition. Mach. Vis. Appl. 27, 1213–1228 (2016)
Castro, F.: Fisher motion descriptor for multiview gait recognition. Int. J. Pattern Recognit. Artif. Intell. 31(1), 1756002 (2017)
Castro, F.M., Marín-Jiménez, M.J., Guil, N., Pérez de la Blanca, N.: Automatic learning of gait signatures for people identification. In: Advances in Computational Intelligence, pp. 257–270 (2017)
Chai, Y., et al.: A novel human gait recognition method by segmenting and extracting the region variance feature. Proc. Int. Conf. Pattern Recognit. (ICPR) 4, 425–428 (2006)
Chen, S., Gao, Y.: An invariant appearance model for gait recognition. In: Proc. IEEE Int. Conf. Multimed. and Expo (ICME), pp. 1375–1378. IEEE (2007)
Choudhury, S.D., Tjahjadi, T.: Silhouette-based gait recognition using procrustes shape analysis and elliptic fourier descriptors. Pattern Recognit. 45(9), 3414–3426 (2012)
Cunado, D., Nixon, M.S., Carter, J.N.: Automatic extraction and description of human gait models for recognition purposes. Comput. Vis. Image Underst. 90(1), 1–41 (2003)
Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B Stat. Methodol. 39, 1–38 (1977)
Dupuis, Y., Savatier, X., Vasseur, P.: Feature subset selection applied to model-free gait recognition. Image Vis. Comput. 31(8), 580–591 (2013)
Fan, R.E.: Liblinear: a library for large linear classification. J. Mach. Learn. Res. 9, 1871–1874 (2008)
Goffredo, M., Carter, J.N., Nixon, M.S.: Front-view gait recognition. In: 2nd IEEE Int. Conf. on Biometrics: Theory, Applications and Systems, pp. 1–6. IEEE (2008)
Gross, R., Shi, J.: The CMU motion of body (MoBo) database. Carnegie Mellon University (2001)
Guan, Y., Li, C.T.: A robust speed-invariant gait recognition system for walker and runner identification. In: IEEE Int. Conf. on Biometrics (ICB), pp. 1–8 (2013)
Hofmann, M., Bachmann, S., Rigoll, G.: 2.5D gait biometrics using the depth gradient histogram energy image. In: Proc. IEEE BATS Conf., pp. 399–403 (2012)
Khan, M.H., et al.: Automatic recognition of movement patterns in the vojta-therapy using RGB-D data. In: Proc. Int. Conf. Image Process. (ICIP), pp. 1235–1239 (2016)
Khan, M.H., Li, F., Farid, M.S., Grzegorzek, M.: Gait recognition using motion trajectoryanalysis. In: Proc. 10th Int. Conf. on Computer Recognition Systems (CORES), pp. 73–82. Springer (2017)
Kusakunniran, W.: Attribute-based learning for gait recognition using spatio-temporal interest points. Image Vis. Comput. 32(12), 1117–1126 (2014)
Kusakunniran, W., et al.: Automatic gait recognition using weighted binary pattern on video. In: Proc. 6th IEEE AVSS, pp. 49–54 (2009)
Lee, H., Hong, S., Kim, E.: An efficient gait recognition based on a selective neural network ensemble. Int. J. Imaging Syst. Technol. 18(4), 237–241 (2008)
Lee, L., Grimson, W.E.L.: Gait analysis for recognition and classification. In: 5th IEEE Int. Conf. on Automatic Face and Gesture Recognit., pp. 155–162. IEEE (2002)
Lishani, A.O., Boubchir, L., Khalifa, E., Bouridane, A.: Human gait recognition based on haralick features. Signal Image Video Process. 11(6), 1123–1130 (2017)
Little, R.J.A., Rubin, D.B.: Statistical Analysis with Missing Data. Wiley Series in Probability and Statistics. Wiley, New York (1987)
Liu, J., et al.: Skeleton-based action recognition using spatio-temporal LSTM network with trust gates. IEEE Trans. Pattern Anal. Mach. Intell. 39, 1028–1039 (2017)
Liu, J.: Skeleton-based human action recognition with global context-aware attention LSTM networks. IEEE Trans. Image Process. 27(4), 1586–1599 (2018)
Loula, F.: Recognizing people from their movement. J. Exp. Psychol. Hum. Percept. 31(1), 210 (2005)
Lu, J., Zhang, E., Jing, C.: Gait recognition using wavelet descriptors and independent component analysis. In: Int. Symposium on Neural Networks, pp. 232–237. Springer (2006)
Man, J., et al.: Individual recognition using gait energy image. IEEE Trans. Pattern Anal. Mach. Intell. 28(2), 316–322 (2006)
McLachlan, G., Peel, D.: Finite Mixture Models. Wiley, Hoboken (2004)
Nizami, I.F., et al.: Multi-view gait recognition fusion methodology. In: 3rd IEEE Conf. on Industrial Electronics and Applications, pp. 2101–2105. IEEE (2008)
Peng, X., Wang, L., Wang, X., Qiao, Y.: Bag of visual words and fusion methods for action recognition: comprehensive study and good practice. Comput. Vis. Image Underst. 150, 109–125 (2016)
Peng, X., Zou, C., Qiao, Y., Peng, Q.: Action recognition with stacked fisher vectors. In: ECCV, pp. 581–595 (2014)
Perronnin, F., et al.: Improving the fisher kernel for large-scale image classification. In: ECCV, pp. 143–156 (2010)
Raheja, J.L., Chaudhary, A., Nandhini, K., Maiti, S.: Pre-consultation help necessity detection based on gait recognition. Signal Image Video Process. 9(6), 1357–1363 (2015)
Rida, I., Almaadeed, S., Bouridane, A.: Gait recognition based on modified phase-only correlation. Signal Image Video Process. 10(3), 463–470 (2016)
Sánchez, J.: Image classification with the fisher vector: theory and practice. Int. J. Comput. Vis. 105(3), 222–245 (2013)
Shaikh, S.H., Saeed, K., Chaki, N.: Gait recognition using partial silhouette-based approach. In: 2014 Int. Conf. on Signal Processing and Integrated Networks (SPIN), pp. 101–106 (2014)
Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recognition in videos. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 27, pp. 568–576 (2014)
Sivapalan, S., et al.: Gait energy volumes and frontal gait recognition using depth images. In: Proc. Int. Joint Conf. Biometrics (IJCB), pp. 1–6 (2011)
Stevenage, S.V., Nixon, M.S., Vince, K.: Visual analysis of gait as a cue to identity. Appl. Cogn. Psychol. 13(6), 513–526 (1999)
Sun, C., Nevatia, R.: Large-scale web video event classification by use of fisher vectors. In: Proc. IEEE Workshop on Applications of Computer Vision (WACV), pp. 15–22. IEEE (2013)
Tan, D., Huang, K., Yu, S., Tan, T.: Uniprojective features for gait recognition. In: Proc. Int. Conf. Biom., pp. 673–682 (2007)
Tan, D., et al.: Walker recognition without gait cycle estimation. In: Proc. Int. Conf. Biom., pp. 222–231 (2007)
Tan, D., et al.: Efficient night gait recognition based on template matching. Proc. ICPR 3, 1000–1003 (2006)
Vaidya, S., Shah, K.: Real time video surveillance system. Int. J. Comput. Appl. 86(14), 22–27 (2014)
Varol, G., Laptev, I., Schmid, C.: Long-term temporal convolutions for action recognition. IEEE Trans. Pattern Anal. Mach. Intell. 40(6), 1510–1517 (2018)
Veeraraghavan, A., Chowdhury, A.R., Chellappa, R.: Role of shape and kinematics in human movement analysis. In: Proc. IEEE CVPR, vol. 1, pp. I–730 (2004)
Veeraraghavan, A., et al.: Matching shape sequences in video with applications in human movement analysis. IEEE Trans. Pattern Anal. Mach. Intell. 27(12), 1896–1909 (2005)
Wang, C., et al.: Human identification using temporal information preserving gait template. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2164–2176 (2012)
Wang, H.: Dense trajectories and motion boundary descriptors for action recognition. Int. J. Comput. Vis. 103(1), 60–79 (2013)
Wang, L., Ning, H., Tan, T., Hu, W.: Fusion of static and dynamic body biometrics for gait recognition. IEEE Trans. Circuits Syst. Video Technol. 14(2), 149–158 (2004)
Wang, L., Tan, T., Hu, W., Ning, H.: Automatic gait recognition based on statistical shape analysis. IEEE Trans. Image Process. 12(9), 1120–1131 (2003)
Wang, L., Tan, T., Ning, H., Hu, W.: Silhouette analysis-based gait recognition for human identification. IEEE Trans. Pattern Anal. Mach. Intell. 25(12), 1505–1518 (2003)
Whytock, T., et al.: Dynamic distance-based shape features for gait recognition. J. Math. Imaging Vis. 50(3), 314–326 (2014)
Yang, Y., Tu, D., Li, G.: Gait recognition using flow histogram energy image. In: Proc. Int. Conf. Pattern Recognit. (ICPR), pp. 444–449 (2014)
Yu, S., et al.: A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition. Proc. Int. Conf. Pattern Recognit. (ICPR) 4, 441–444 (2006)
Zeng, W., et al.: Silhouette-based gait recognition via deterministic learning. Pattern Recognit. 47(11), 3568–3584 (2014)
Zhang, E., Zhao, Y., Xiong, W.: Active energy image plus 2DLPP for gait recognition. Signal Process. 90(7), 2295–2302 (2010)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Khan, M.H., Farid, M.S. & Grzegorzek, M. Spatiotemporal features of human motion for gait recognition. SIViP 13, 369–377 (2019). https://doi.org/10.1007/s11760-018-1365-y
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11760-018-1365-y