Abstract
Microarrays provide a simple way to measure the level of hybridization of known probes of interest with one or more samples under different conditions. The rapid development of microarray technology requires the implementation of smart and flexible algorithms to deal either with the great amount of data or with the variations of the used hardware. In this paper, a generalized methodology for spot addressing and gridding of microarray images is presented. The methodology can cope with both rectangular and hexagonal grids, which are used for the probes placement onto the substrate. Initially, the methodology identifies the structure of the image, and an efficient spot-by-spot approach has been developed for the detection of all spots in the image. The evaluation of the methodology was performed using both rectangular and hexagonal structured images, merged in a single dataset. The methodology results in high accuracy in the spots detection, ranging from 92.8 to 99.8 % depending on the dataset used.
Similar content being viewed by others
References
Schena, M., Shalon, D., Davis, R.W., Brown, P.O.: Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470 (1995)
Eisen, M.B., Brown, P.O.: DNA arrays for analysis of gene expression. Methods Enzymol. 303, 179–205 (1999)
Shen, R., Fan, J.B., Campbell, D., Chang, W., Chen, J., Doucet, D., Yeakley, J., Bibikova, M., Wickham-Garcia, E., McBride, C., Steemers, F., Garcia, F., Kermani, B.G., Gunderson, K., Oliphant, A.: High-throughput SNP genotyping on universal bead arrays. Mutat. Res. 573, 70–82 (2005)
MacBeath, G., Stuart, L.: Schreiber printing proteins as microarrays for high-throughput function determination. Science 289, 1760–1763 (2000)
Shinawi, M., Cheung, S.W.: The array CGH and its clinical applications. Drug Discov. Today 13, 760–770 (2008)
Dudoit, S., Yang, Y.H., Callow, M.J., Speed, T.P.: Statistical methods for identifying differentially expressed genes in replicated cDNA microarray experiments. Stat. Sin. 12, 111–139 (2002)
Beleana, B., Bordaa, M., Galc, B.L., Terebesa, R.: FPGA based system for automatic cDNA microarray image processing. Comput. Med. Imaging Graph. 36(5), 419–429 (2012)
Athanasiadis, E.I., Cavouras, D.A., Spyridonos, P.P., Glotsos, D.T., Kalatzis, I.K., Nikiforidis, G.C.: Complementary DNA microarray image processing based on the fuzzy Gaussian mixture model. IEEE Trans. Inf. Technol. Biomed. 13(4), 419–425 (2009)
Giannakeas, N., Kalatzis, T., Fotiadis, D.I.: Spot addressing for microarray images structured in hexagonal grids. Comput. Methods Programs Biomed. 106(1), 1–13 (2012)
Shao, G., Yang, F., Zhang, Q., Zhou, Q., Luo, L.: Using the maximum between-class variance for automatic gridding of cDNA microarray images. IEEE/ACM Trans. Comput. Biol. Bioinform. PP(99), 1–10 (2012)
Harikiran, J., Rama-Krishna, D., Phanendra, M.L., Lakshmi, P.V., Kiran -Kumar, R.: Fuzzy C-means with Bi-dimensional empirical mode decomposition for segmentation of microarray image. IJCSI 9(5), 316–321 (2012)
Weng, G., Hu, Y., Li, Z.: cDNA microarray image segmentation using shape-adaptive DCT and K-means clustering. In: International Conference in Electrics, Communication and Automatic Control, pp. 317–324 (2012)
Liu, J., Feng, Y., Liu, W., Wang, T.: A microarray image gridding method based on image projection difference sequences analysis and local extrema searching. In: 10th World Congress on Intelligent Control and Automation, pp. 4961–4964 (2012)
Yao, Z., Shunxiang, W.: Statistics-adaptive method for cDNA microarray images gridding. In: 4th International Conference on Digital Home, pp. 380–383 (2012)
Labib, F.E.-Z., Fouad, I., Mabrouk, M., Sharawy, A.: An efficient fully automated method for gridding microarray images. Am. J. Biomed. Eng. 2(3), 115–119 (2012)
Schena, M.: Microarray Biochip Technology. Eaton Publishing, Natick (2000)
Eisen, M.B.: ScanAlyse. http://rana.Stanford.EDU/software/ (1999)
Fielden, M.R., Halgren, R.G., Dere, E., Zacharewski, T.R.: GP3: GenePix post-processing program for automated analysis of raw microarray data. Bioinformatics 18, 771–773 (2002)
Bajcsy, P.: Gridline: automatic grid alignment in dna microarray scans. IEEE Trans. Image Process. 13, 15–25 (2004)
Blekas, K., Galatsanos, N., Likas, A., Lagaris, I.E.: Mixture model analysis of DNA microarray images. IEEE Trans. Med. Imaging 24(7), 901–909 (2005)
Jain, A.N., Tokuyasu, T.A., Snijders, A.M., Segraves, R., Albertson, D.G., Pinkel, D.: Fully automated quantification of microarray image data. Genome Res. 12, 325–332 (2002)
Hirata, R., Barrera, J., Hashimoto, R.F., Dantas, D.: Microarray gridding by mathematical morphology. In: Proceedings of the Ijth Brazilian Symposium on Computer Graphics and Image Processing, pp. 112–119 (2001)
Bengtsson, A., Bengtsson, H.: Microarray image analysis: background estimation using quantile and morphological filters. BMC Bioinformat. 7, 96–105 (2006)
Lonardi, S., Yu, L.: Gridding and compression of microarray images. In: Proceedings of IEEE Computational Systems Bioinformatics Conference-Workshops (CSBW’05), pp. 122–130 (2004)
Bariamis, D., Maroulis, D., Iakovidis, D.K.: Automatic DNA microarray gridding based on support vector machines. In: The Proceedings of 8th IEEE International Conference on BioInformatics and BioEngineering, pp. 1–5 (2008)
Bariamis, D., Maroulis, D., Iakovidis, D.K.: Unsupervised SVM-based gridding for DNA microarray images. Comput. Med. Imaging Graph. 34, 418–425 (2010)
Zacharia, E., Maroulis, D.: An original genetic approach to the fully-automatic gridding of microarray images. IEEE Trans. Med. Imaging 27, 805–813 (2008)
Jung, H.-Y., Cho, H.-G.: An automatic block and spot indexing with k-nearest neighbors graph for microarray image analysis. Bioinformatics 18, S141–S151 (2002)
Giannakeas, N., Fotiadis, D.I., Politou, A.S.: An automated method for gridding in microarray images. In: 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 5876–5879 (2006)
Giannakeas, N., Fotiadis, D.I.: An automated method for gridding and segmentation Of cDNA microarray images. Comput. Med. Imaging Graph. 33, 40–49 (2009)
Galinsky, V.L.: Automatic registration of microarray images. I. Rectangular grid. Bioinformatics 19, 1824–1831 (2003)
Steinfath, M., Wruck, W., Seidel, H., Lehrach, H., Radelof, U., O’Brien, J.: Automated image analysis for array hybridization experiments. Bioinformatics 17, 634–641 (2001)
Ceccarelli, M., Antoniol, G.: A deformable grid-matching approach for microarray images. IEEE Trans. Image Process. 15, 3178–3188 (2006)
Galinsky, V.L.: Automatic registration of microarray images. I. Hexagonal grid. Bioinformatics 19, 1832–1836 (2003)
Gollub, J., Ball, C.A., Binkley, G., Demeter, K., Finkelstein, D.B., Hebert, J.M., Hernandez-Boussard, T., Jin, H., Kaplper, M., Matese, J.C., Schroeder, M., Brown, P.O., Botstein, D., Sherlock, G.: The Stanford Microarray Database: data access and quality assessment tools. Nucleic Acids Res. 31(1), 94–96 (2003)
Ionita-Laza, I., Rogers, A.J., Lange, C., Raby, B.A., Lee, C.: Genetic association analysis of copy-number variation (CNV) in human disease pathogenesis. Genomics 93(1), 22–26 (2009)
Nykter, M., Aho, T., Ahdesmäki, M., Ruusuvuori, P., Lehmussola, A., Yli-Harja, O.: Simulation of microarray data with realistic characteristics. BMC Bioinformat. 7, 349–365 (2006)
Roerdink, J.B.T.M., Meijster, A.: The watershed transform: definitions, algorithms and parallelization strategies. Fundamenta Informaticae 41, 187–228 (2000)
MacQueen, J.B.: Some methods for classification and analysis of multivariate observations. In: Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability. Berkeley. University of California Press, vol. 1, pp. 281–297 (1967)
Otsu, N.: A threshold selection method for gray-levels histograms. IEEE Trans. Pattern Anal. Mach. Intell. 13, 583–598 (1979)
Aurenhammer, F.: Voronoi diagrams—a survey of a fundamental geometric data structure. In: Proceedings of ACM Computing Surveys, vol. 23, pp. 345–405 (1991)
Kalatzis, F.G., Giannakeas, N., Exarchos, T.P., Lorenzelli, L., Adami, A., Decarli, M., Lupoli, S., Macciardi, F., Markoula, S., Georgiou, I., Fotiadis, D.I.: Developing a genomic-based point-of-care diagnostic system for rheumatoid arthritis and multiple sclerosis. In: 31st Annual International Conference of IEEE Engineering in Medicine and Biology Society, pp. 827–830 (2009)
Acknowledgments
This work is part funded by the European Commission (POCEMON Project, FP7-ICT-2007-216088).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Giannakeas, N., Kalatzis, F., Tsipouras, M.G. et al. A generalized methodology for the gridding of microarray images with rectangular or hexagonal grid. SIViP 10, 719–728 (2016). https://doi.org/10.1007/s11760-015-0800-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11760-015-0800-6