Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A generalized methodology for the gridding of microarray images with rectangular or hexagonal grid

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Microarrays provide a simple way to measure the level of hybridization of known probes of interest with one or more samples under different conditions. The rapid development of microarray technology requires the implementation of smart and flexible algorithms to deal either with the great amount of data or with the variations of the used hardware. In this paper, a generalized methodology for spot addressing and gridding of microarray images is presented. The methodology can cope with both rectangular and hexagonal grids, which are used for the probes placement onto the substrate. Initially, the methodology identifies the structure of the image, and an efficient spot-by-spot approach has been developed for the detection of all spots in the image. The evaluation of the methodology was performed using both rectangular and hexagonal structured images, merged in a single dataset. The methodology results in high accuracy in the spots detection, ranging from 92.8 to 99.8 % depending on the dataset used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Schena, M., Shalon, D., Davis, R.W., Brown, P.O.: Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470 (1995)

    Article  Google Scholar 

  2. Eisen, M.B., Brown, P.O.: DNA arrays for analysis of gene expression. Methods Enzymol. 303, 179–205 (1999)

    Article  Google Scholar 

  3. Shen, R., Fan, J.B., Campbell, D., Chang, W., Chen, J., Doucet, D., Yeakley, J., Bibikova, M., Wickham-Garcia, E., McBride, C., Steemers, F., Garcia, F., Kermani, B.G., Gunderson, K., Oliphant, A.: High-throughput SNP genotyping on universal bead arrays. Mutat. Res. 573, 70–82 (2005)

    Article  Google Scholar 

  4. MacBeath, G., Stuart, L.: Schreiber printing proteins as microarrays for high-throughput function determination. Science 289, 1760–1763 (2000)

    Google Scholar 

  5. Shinawi, M., Cheung, S.W.: The array CGH and its clinical applications. Drug Discov. Today 13, 760–770 (2008)

    Article  Google Scholar 

  6. Dudoit, S., Yang, Y.H., Callow, M.J., Speed, T.P.: Statistical methods for identifying differentially expressed genes in replicated cDNA microarray experiments. Stat. Sin. 12, 111–139 (2002)

  7. Beleana, B., Bordaa, M., Galc, B.L., Terebesa, R.: FPGA based system for automatic cDNA microarray image processing. Comput. Med. Imaging Graph. 36(5), 419–429 (2012)

    Article  Google Scholar 

  8. Athanasiadis, E.I., Cavouras, D.A., Spyridonos, P.P., Glotsos, D.T., Kalatzis, I.K., Nikiforidis, G.C.: Complementary DNA microarray image processing based on the fuzzy Gaussian mixture model. IEEE Trans. Inf. Technol. Biomed. 13(4), 419–425 (2009)

  9. Giannakeas, N., Kalatzis, T., Fotiadis, D.I.: Spot addressing for microarray images structured in hexagonal grids. Comput. Methods Programs Biomed. 106(1), 1–13 (2012)

    Article  Google Scholar 

  10. Shao, G., Yang, F., Zhang, Q., Zhou, Q., Luo, L.: Using the maximum between-class variance for automatic gridding of cDNA microarray images. IEEE/ACM Trans. Comput. Biol. Bioinform. PP(99), 1–10 (2012)

    Google Scholar 

  11. Harikiran, J., Rama-Krishna, D., Phanendra, M.L., Lakshmi, P.V., Kiran -Kumar, R.: Fuzzy C-means with Bi-dimensional empirical mode decomposition for segmentation of microarray image. IJCSI 9(5), 316–321 (2012)

    Google Scholar 

  12. Weng, G., Hu, Y., Li, Z.: cDNA microarray image segmentation using shape-adaptive DCT and K-means clustering. In: International Conference in Electrics, Communication and Automatic Control, pp. 317–324 (2012)

  13. Liu, J., Feng, Y., Liu, W., Wang, T.: A microarray image gridding method based on image projection difference sequences analysis and local extrema searching. In: 10th World Congress on Intelligent Control and Automation, pp. 4961–4964 (2012)

  14. Yao, Z., Shunxiang, W.: Statistics-adaptive method for cDNA microarray images gridding. In: 4th International Conference on Digital Home, pp. 380–383 (2012)

  15. Labib, F.E.-Z., Fouad, I., Mabrouk, M., Sharawy, A.: An efficient fully automated method for gridding microarray images. Am. J. Biomed. Eng. 2(3), 115–119 (2012)

    Article  Google Scholar 

  16. Schena, M.: Microarray Biochip Technology. Eaton Publishing, Natick (2000)

    Google Scholar 

  17. Eisen, M.B.: ScanAlyse. http://rana.Stanford.EDU/software/ (1999)

  18. Fielden, M.R., Halgren, R.G., Dere, E., Zacharewski, T.R.: GP3: GenePix post-processing program for automated analysis of raw microarray data. Bioinformatics 18, 771–773 (2002)

    Article  Google Scholar 

  19. Bajcsy, P.: Gridline: automatic grid alignment in dna microarray scans. IEEE Trans. Image Process. 13, 15–25 (2004)

    Article  Google Scholar 

  20. Blekas, K., Galatsanos, N., Likas, A., Lagaris, I.E.: Mixture model analysis of DNA microarray images. IEEE Trans. Med. Imaging 24(7), 901–909 (2005)

    Article  Google Scholar 

  21. Jain, A.N., Tokuyasu, T.A., Snijders, A.M., Segraves, R., Albertson, D.G., Pinkel, D.: Fully automated quantification of microarray image data. Genome Res. 12, 325–332 (2002)

    Article  Google Scholar 

  22. Hirata, R., Barrera, J., Hashimoto, R.F., Dantas, D.: Microarray gridding by mathematical morphology. In: Proceedings of the Ijth Brazilian Symposium on Computer Graphics and Image Processing, pp. 112–119 (2001)

  23. Bengtsson, A., Bengtsson, H.: Microarray image analysis: background estimation using quantile and morphological filters. BMC Bioinformat. 7, 96–105 (2006)

    Article  Google Scholar 

  24. Lonardi, S., Yu, L.: Gridding and compression of microarray images. In: Proceedings of IEEE Computational Systems Bioinformatics Conference-Workshops (CSBW’05), pp. 122–130 (2004)

  25. Bariamis, D., Maroulis, D., Iakovidis, D.K.: Automatic DNA microarray gridding based on support vector machines. In: The Proceedings of 8th IEEE International Conference on BioInformatics and BioEngineering, pp. 1–5 (2008)

  26. Bariamis, D., Maroulis, D., Iakovidis, D.K.: Unsupervised SVM-based gridding for DNA microarray images. Comput. Med. Imaging Graph. 34, 418–425 (2010)

    Article  Google Scholar 

  27. Zacharia, E., Maroulis, D.: An original genetic approach to the fully-automatic gridding of microarray images. IEEE Trans. Med. Imaging 27, 805–813 (2008)

    Article  Google Scholar 

  28. Jung, H.-Y., Cho, H.-G.: An automatic block and spot indexing with k-nearest neighbors graph for microarray image analysis. Bioinformatics 18, S141–S151 (2002)

    Article  Google Scholar 

  29. Giannakeas, N., Fotiadis, D.I., Politou, A.S.: An automated method for gridding in microarray images. In: 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 5876–5879 (2006)

  30. Giannakeas, N., Fotiadis, D.I.: An automated method for gridding and segmentation Of cDNA microarray images. Comput. Med. Imaging Graph. 33, 40–49 (2009)

    Article  Google Scholar 

  31. Galinsky, V.L.: Automatic registration of microarray images. I. Rectangular grid. Bioinformatics 19, 1824–1831 (2003)

    Article  Google Scholar 

  32. Steinfath, M., Wruck, W., Seidel, H., Lehrach, H., Radelof, U., O’Brien, J.: Automated image analysis for array hybridization experiments. Bioinformatics 17, 634–641 (2001)

    Article  Google Scholar 

  33. Ceccarelli, M., Antoniol, G.: A deformable grid-matching approach for microarray images. IEEE Trans. Image Process. 15, 3178–3188 (2006)

    Article  Google Scholar 

  34. Galinsky, V.L.: Automatic registration of microarray images. I. Hexagonal grid. Bioinformatics 19, 1832–1836 (2003)

    Article  Google Scholar 

  35. Gollub, J., Ball, C.A., Binkley, G., Demeter, K., Finkelstein, D.B., Hebert, J.M., Hernandez-Boussard, T., Jin, H., Kaplper, M., Matese, J.C., Schroeder, M., Brown, P.O., Botstein, D., Sherlock, G.: The Stanford Microarray Database: data access and quality assessment tools. Nucleic Acids Res. 31(1), 94–96 (2003)

    Article  Google Scholar 

  36. Ionita-Laza, I., Rogers, A.J., Lange, C., Raby, B.A., Lee, C.: Genetic association analysis of copy-number variation (CNV) in human disease pathogenesis. Genomics 93(1), 22–26 (2009)

    Article  Google Scholar 

  37. Nykter, M., Aho, T., Ahdesmäki, M., Ruusuvuori, P., Lehmussola, A., Yli-Harja, O.: Simulation of microarray data with realistic characteristics. BMC Bioinformat. 7, 349–365 (2006)

    Article  Google Scholar 

  38. Roerdink, J.B.T.M., Meijster, A.: The watershed transform: definitions, algorithms and parallelization strategies. Fundamenta Informaticae 41, 187–228 (2000)

  39. MacQueen, J.B.: Some methods for classification and analysis of multivariate observations. In: Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability. Berkeley. University of California Press, vol. 1, pp. 281–297 (1967)

  40. Otsu, N.: A threshold selection method for gray-levels histograms. IEEE Trans. Pattern Anal. Mach. Intell. 13, 583–598 (1979)

    Google Scholar 

  41. Aurenhammer, F.: Voronoi diagrams—a survey of a fundamental geometric data structure. In: Proceedings of ACM Computing Surveys, vol. 23, pp. 345–405 (1991)

  42. Kalatzis, F.G., Giannakeas, N., Exarchos, T.P., Lorenzelli, L., Adami, A., Decarli, M., Lupoli, S., Macciardi, F., Markoula, S., Georgiou, I., Fotiadis, D.I.: Developing a genomic-based point-of-care diagnostic system for rheumatoid arthritis and multiple sclerosis. In: 31st Annual International Conference of IEEE Engineering in Medicine and Biology Society, pp. 827–830 (2009)

Download references

Acknowledgments

This work is part funded by the European Commission (POCEMON Project, FP7-ICT-2007-216088).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios I. Fotiadis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giannakeas, N., Kalatzis, F., Tsipouras, M.G. et al. A generalized methodology for the gridding of microarray images with rectangular or hexagonal grid. SIViP 10, 719–728 (2016). https://doi.org/10.1007/s11760-015-0800-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-015-0800-6

Keywords

Navigation