Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Landslide susceptibility mapping using an integrated model of information value method and logistic regression in the Bailongjiang watershed, Gansu Province, China

  • Published:
Journal of Mountain Science Aims and scope Submit manuscript

Abstract

Bailongjiang watershed in southern Gansu province, China, is one of the most landslide-prone regions in China, characterized by very high frequency of landslide occurrence. In order to predict the landslide occurrence, a comprehensive map of landslide susceptibility is required which may be significantly helpful in reducing loss of property and human life. In this study, an integrated model of information value method and logistic regression is proposed by using their merits at maximum and overcoming their weaknesses, which may enhance precision and accuracy of landslide susceptibility assessment. A detailed and reliable landslide inventory with 1587 landslides was prepared and randomly divided into two groups, (i) training dataset and (ii) testing dataset. Eight distinct landslide conditioning factors including lithology, slope gradient, aspect, elevation, distance to drainages, distance to faults, distance to roads and vegetation coverage were selected for landslide susceptibility mapping. The produced landslide susceptibility maps were validated by the success rate and prediction rate curves. The validation results show that the success rate and the prediction rate of the integrated model are 81.7 % and 84.6 %, respectively, which indicate that the proposed integrated method is reliable to produce an accurate landslide susceptibility map and the results may be used for landslides management and mitigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anbalagan R (1992) Landslide hazard evaluation and zonation mapping in mountainous terrain. Engineering Geology 32(4): 269–277. DOI: 10.1016/0013-7952(92)90053-2

    Article  Google Scholar 

  • Arora MK, Das Gupta AS, Gupta RP (2004) An artificial neural network approach for landslide hazard zonation in the Bhagirathi (Ganga) Valley, Himalayas. International Journal of Remote Sensing 25(3): 559–572. DOI:10.1080/0143116031000156819

    Article  Google Scholar 

  • Ayalew L, Yamagishi H (2005) The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 65(1): 15–31. DOI:10.1016/j.geomorph.2004.06.010

    Article  Google Scholar 

  • Bai SB, Wang J, Lü GN, et al. (2010) GIS-based logistic regression for landslide susceptibility mapping of the Zhongxian segment in the Three Gorges area, China. Geomorphology 115(1): 23–31. DOI:10.1016/j.geomorph.2009.09.025

    Article  Google Scholar 

  • Bai SB, Wang J, Thiebes B, et al. (2014) Susceptibility assessments of the Wenchuan earthquake-triggered landslides in Longnan using logistic regression. Environmental earth sciences 71(2): 731–743. DOI: 10.1007/s12665-013-2475-z

    Article  Google Scholar 

  • Binaghi E, Luzi L, Madella P, et al. (1998) Slope instability zonation: A comparison between certainty factor and fuzzy Dempster-Shafer approaches. Natural Hazards 17(1): 77–97. DOI: 10.1023/A:1008001724538

    Article  Google Scholar 

  • Bui DT, Lofman O, Revhaug I, et al. (2011) Landslide susceptibility analysis in the Hoa Binh province of Vietnam using statistical index and logistic regression. Natural hazards 59(3): 1413–1444. DOI: 10.1007/s11069-011-9844-2

    Article  Google Scholar 

  • Bui DT, Tuan TA, Klempe H, et al. (2016) Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides 13(2): 361–378. DOI: 10.1007/s10346-015-0557-6

    Article  Google Scholar 

  • Chauhan S, Sharma M, Arora MK, et al. (2010) Landslide susceptibility zonation through ratings derived from artificial neural networks. International Journal of Applied Earth Observation and Geoinformation 12(5): 340–350. DOI: 10.1016/j.jag.2010.04.006

    Article  Google Scholar 

  • Chen CY, Ren JW, Meng GJ, et al. (2012) Analysis of modern activity of major faults in northeast margin of Bryan-Hat block. Journal of Geodesy and Geodynamics 32(3): 27–30. (In Chinese)

    Google Scholar 

  • Chen T, Niu R, Jia X (2016) A comparison of information value and logistic regression models in landslide susceptibility mapping by using GIS. Environmental Earth Sciences 75(10): 1–16. DOI: 10.1007/s12665-016-5317-y

    Google Scholar 

  • Conforti M, Aucelli PPC, Robustelli G, et al. (2011) Geomorphology and GIS analysis for mapping gully erosion susceptibility in the Turbolo stream catchment (Northern Calabria, Italy). Natural hazards 56(3): 881–898. DOI: 10.1007/s11069-010-9598-2

    Article  Google Scholar 

  • Constantin M, Bednarik M, Jurchescu, et al. (2011) Landslide susceptibility assessment using the bivariate statistical analysis and the index of entropy in the Sibiciu Basin (Romania). Environmental Earth Sciences 63(2): 397–406. DOI: 10.1007/s12665-010-0724-y

    Article  Google Scholar 

  • Cruden DM (1991) A simple definition of a landslide. Bulletin of the International Association of Engineering Geology 43(1): 27–29. DOI: 10.1007/BF02590167

    Article  Google Scholar 

  • Dai FC, Lee CF (2003) A spatiotemporal probabilistic modelling of storm-induced shallow landsliding using aerial photographs and logistic regression. Earth Surface Processes and Landforms 28(5): 527–545. DOI: 10.1002/esp.456

    Article  Google Scholar 

  • Demir G, Aytekin M, Akgun A. (2015) Landslide susceptibility mapping by frequency ratio and logistic regression methods: an example from Niksar–Resadiye (Tokat, Turkey). Arabian Journal of Geosciences 8(3): 1801–1812. DOI: 10.1007/s12517-014-1332-z

    Article  Google Scholar 

  • Devkota KC, Regmi AD, Pourghasemi HR, et al. (2013) Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling–Narayanghat road section in Nepal Himalaya. Natural Hazards 65(1): 135–165. DOI: 10.1007/s11069-012-0347-6

    Article  Google Scholar 

  • Domínguez-Cuesta MJ, Jiménez-Sánchez M, Colubi A, et al. (2010) Modelling shallow landslide susceptibility: a new approach in logistic regression by using favourability assessment. International journal of earth sciences, 2010, 99(3): 661–674. DOI: 10.1007/s00531-008-0414-0

    Article  Google Scholar 

  • Feizizadeh B, Roodposhti MS, Jankowski P, et al. (2014) A GISbased extended fuzzy multi-criteria evaluation for landslide susceptibility mapping. Computers & Geosciences 73: 208–221. DOI:10.1016/j.cageo.2014.08.001

    Article  Google Scholar 

  • Fenta AA, Kifle A, Gebreyohannes T, Hailu G (2015) Spatial analysis of groundwater potential using remote sensing and GIS-based multicriteria evaluation in Raya Valley, northern Ethiopia. Hydrogeology Journal 23(1): 195–206. DOI: 10.1007/s10040-014-1198-x

    Article  Google Scholar 

  • Ghosh S, Carranza, EJM, Van Westen CJ, et al. (2011) Selecting and weighting spatial predictors for empirical modeling of landslide susceptibility in the Darjeeling Himalayas (India). Geomorphology 131(1): 35–56. DOI:10.1016/j.geomorph.2011.04.019

    Article  Google Scholar 

  • Guo CB, Montgomery DR, Zhang YS, et al. (2015) Quantitative assessment of landslide susceptibility along the Xianshuihe fault zone, Tibetan Plateau, China. Geomorphology 248: 93–110. DOI: 10.1016/j.geomorph.2015.07.012

    Article  Google Scholar 

  • Kayastha P, Dhital MR, De SF (2012) Application of the analytical hierarchy process (AHP) for landslide susceptibility mapping: a case study from the Tinau watershed, west Nepal. Computers & Geosciences 52: 398–408. DOI: 10.1016/j.cageo.2012.11.003

    Article  Google Scholar 

  • Lan HX, Zhou CH, Wang LJ, et al. (2004) Landslide hazard spatial analysis and prediction using GIS in the Xiaojiang watershed, Yunnan, China. Engineering geology 76(1): 109–128. DOI:10.1016/j.enggeo.2004.06.009

    Article  Google Scholar 

  • Lee S, Pradhan B (2006) Probabilistic landslide hazards and risk mapping on Penang Island, Malaysia. Journal of Earth System Science 115(6): 661–672. DOI: 10.1007/s12040-006-0004-0

    Article  Google Scholar 

  • Lee S, Talib JA (2005) Probabilistic landslide susceptibility and factor effect analysis. Environmental Geology 47(7): 982–990. DOI: 10.1007/s00254-005-1228-z

    Article  Google Scholar 

  • Li SZ, Dai S, Wang HW, Zhang X (2015) Fault features and their implications on distribution and formation of landslides in Bailongjiang Region. Journal of Lanzhou University (Natural Sciences) 51(2): 145–152 (In Chinese)

    Google Scholar 

  • Lin ML, Tung CC (2004) A GIS-based potential analysis of the landslides induced by the Chi-Chi earthquake. Engineering Geology 71(1): 63–77. DOI:10.1016/S0013-7952(03)00126-1

    Article  Google Scholar 

  • Li W L, Huang R, Tang C, et al. (2013) Co-seismic landslide inventory and susceptibility mapping in the 2008 Wenchuan earthquake disaster area, China. Journal of Mountain Science 10(3): 339–354. DOI: 10.1007/s11629-013-2471-5

    Article  Google Scholar 

  • Lombardo L, Cama M, Conoscenti C, et al. (2015) Binary logistic regression versus stochastic gradient boosted decision trees in assessing landslide susceptibility for multiple-occurring landslide events: application to the 2009 storm event in Messina (Sicily, southern Italy). Natural Hazards 79(3): 1621–1648. DOI: 10.1007/s11069-015-1915-3

    Article  Google Scholar 

  • Luzi L, Pergalani F (1999) Slope instability in static and dynamic conditions for urban planning: the ‘Oltre Po Pavese’ case history (Regione Lombardia-Italy). Natural Hazards 20(1): 57–82. DOI: 10.1023/A:1008162814578

    Article  Google Scholar 

  • Meng QH (2014) Study on the methods of geo-hazards risk assessment in Qingling mountain–A case study of Feng county, Baoji city, Shanxi province. Beijing: Chinese Academy of Geological Sciences. (In Chinese)

    Google Scholar 

  • Mezughi TH, Akhir JM, Rafek AGM, et al. (2011) Landslide susceptibility assessment using frequency ratio model applied to an area along the EW highway (Gerik-Jeli). American Journal of Environmental Sciences 7(1): 43–50. DOI: 10.3844/ajessp.2011.43.50

    Article  Google Scholar 

  • Mondal S, Maiti R (2012) Landslide susceptibility analysis of Shiv-Khola watershed, Darjiling: a remote sensing & GIS based Analytical Hierarchy Process (AHP). Journal of the Indian Society of Remote Sensing 40(3): 483–496. DOI: 10.1007/s12524-011-0160-9

    Article  Google Scholar 

  • Nefeslioglu HA, Duman TY, Durmaz S (2008) Landslide susceptibility mapping for a part of tectonic Kelkit Valley (Eastern Black Sea region of Turkey). Geomorphology 94(3): 401–418. DOI:10.1016/j.geomorph.2006.10.036

    Article  Google Scholar 

  • Park NW (2010) Application of Dempster-Shafer theory of evidence to GIS-based landslide susceptibility analysis. Environmental Earth Sciences 62(2): 367–376. DOI: 10.1007/s12665-010-0531-5

    Article  Google Scholar 

  • Pourghasemi HR, Moradi HR, Aghda SMF. (2013) Landslide susceptibility mapping by binary logistic regression, analytical hierarchy process, and statistical index models and assessment of their performances. Natural hazards 69(1): 749–779. DOI: 10.1007/s11069-013-0728-5

    Article  Google Scholar 

  • Pradhan B, Lee S (2010) Landslide susceptibility assessment and factor effect analysis: backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling. Environmental Modelling & Software 25(6): 747–759. DOI:10.1016/j.envsoft.2009.10.016

    Article  Google Scholar 

  • Regmi AD, Yoshida K, Pourghasemi HR, et al. (2014) Landslide susceptibility mapping along Bhalubang-Shiwapur area of mid-Western Nepal using frequency ratio and conditional probability models. Journal of Mountain Science 11(5): 1266–1285. DOI: 10.1007/s11629-013-2847-6

    Article  Google Scholar 

  • Sarkar S, Kanungo DP, Patra AK, et al. (2008) GIS based spatial data analysis for landslide susceptibility mapping. Journal of Mountain Science 5(1): 52–62. DOI: 10.1007/s11629-008-0052-9

    Article  Google Scholar 

  • Sharma M, Kumar R (2008) GIS-based landslide hazard zonation: a case study from the Parwanoo area, Lesser and Outer Himalaya, H.P., India. Bulletin of Engineering Geology and the Environment 67(1): 129–137. DOI: 10.1007/s10064-007-0113-2

    Article  Google Scholar 

  • Tahmassebipoor N, Rahmati O, Noormohamadi F, et al. (2016) Spatial analysis of groundwater potential using weights-ofevidence and evidential belief function models and remote sensing. Arabian Journal of Geosciences 9(1): 1–18. DOI: 10.1007/s12517-015-2166-z

    Article  Google Scholar 

  • Tsangaratos P, Ilia I (2016) Comparison of a logistic regression and Naïve Bayes classifier in landslide susceptibility assessments: The influence of models complexity and training dataset size. Catena 145: 164–179. DOI:10.1016/j.catena.2016.06.004

    Article  Google Scholar 

  • Umar Z, Pradhan B, Ahmad A, et al. (2014) Earthquake induced landslide susceptibility mapping using an integrated ensemble frequency ratio and logistic regression models in West Sumatera Province, Indonesia. Catena 118: 124–135. DOI:10.1016/j.catena.2014.02.005

    Article  Google Scholar 

  • Vijith H, Madhu G (2008) Estimating potential landslide sites of an upland sub-watershed in Western Ghat’s of Kerala (India) through frequency ratio and GIS. Environmental Geology 55(7): 1397–1405. DOI: 10.1007/s00254-007-1090-2

    Article  Google Scholar 

  • Wang JJ, Yin KL, Xiao LL (2014) Landslide susceptibility assessment based on GIS and weighted information value: a case study of Wan Zhou district, Three Gorges Reservoir. Chinese Journal of Rock Mechanics and Engineering 33(4): 797–808 (In Chinese)

    Google Scholar 

  • Wang Y, Seijmonsbergen A C, Bouten W, et al. (2015) Using statistical learning algorithms in regional landslide susceptibility zonation with limited landslide field data. Journal of Mountain Science 12(2): 268–288. DOI: 10.1007/s11629-014-3134-x

    Article  Google Scholar 

  • Wittich KP, Hansing O (1995) Area-averaged vegetative cover fraction estimated from satellite data. International Journal of Biometeorology 38(4): 209–215. DOI: 10.1007/BF01245391

    Article  Google Scholar 

  • Xiao J, Moody A (2005) A comparison of methods for estimating fractional green vegetation cover within a desertto-upland transition zone in central New Mexico, USA. Remote Sensing of Environment 98(2): 237–250. DOI: 10.1016/j.rse.2005.07.011

    Article  Google Scholar 

  • Xu C, Xu X, Dai F, et al. (2012a) Comparison of different models for susceptibility mapping of earthquake triggered landslides related with the 2008 Wenchuan earthquake in China. Computers & Geosciences 46: 317–329. DOI:10.1016/j.cageo.2012.01.002

    Article  Google Scholar 

  • Xu C, Dai FC, Xu XW, et al. (2012b) GIS-based support vector machine modeling of earthquake-triggered landslide susceptibility in the Jianjiang River watershed, China. Geomorphology 145: 70–80. DOI:10.1016/j.geomorph.2011.12.040

    Article  Google Scholar 

  • Xu C, Xu XW, Dai FC, et al. (2013) Application of an incomplete landslide inventory, logistic regression model and its validation for landslide susceptibility mapping related to the May 12, 2008 Wenchuan earthquake of China. Natural hazards 68(2): 883–900. DOI: 10.1007/s11069-013-0661-7

    Article  Google Scholar 

  • Yalcin A (2008) GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): comparisons of results and confirmations. Catena 72(1): 1–12. DOI: 10.1016/j.catena.2007.01.003

    Article  Google Scholar 

  • Yalcin A, Reis S, Aydinoglu AC, et al. (2011) A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey. Catena 85(3): 274–287. DOI: 10.1016/j.catena.2011.01.014

    Article  Google Scholar 

  • Yang ZH, Lan HX, Gao X, et al. (2015) Urgent landslide susceptibility assessment in the 2013 Lushan earthquakeimpacted area, Sichuan Province, China. Natural Hazards, 75(3): 2467–2487. DOI: 10.1007/s11069-014-1441-8

    Article  Google Scholar 

  • Yao X, Tham LG, Dai FC (2008) Landslide susceptibility mapping based on support vector machine: a case study on natural slopes of Hong Kong, China. Geomorphology 101(4): 572–582. DOI:10.1016/j.geomorph.2008.02.011

    Article  Google Scholar 

  • Yilmaz I (2009) Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: a case study from Kat landslides (Tokat-Turkey). Computers & Geosciences 35(6): 1125–1138. DOI:10.1016/j.cageo.2008.08.007

    Article  Google Scholar 

  • Yilmaz I (2010) Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: conditional probability, logistic regression, artificial neural networks, and support vector machine. Environmental Earth Sciences 61(4): 821–836. DOI: 10.1007/s12665-009-0394-9

    Article  Google Scholar 

  • Yilmaz I, Marschalko M, Bendarik M (2013) An assessment on the use of bivariate, multivariate and soft computing techniques for collapse susceptibility in GIS environment. Journal of earth system science 122(2): 371–388. DOI: 10.1007/s12040-013-0281-3

    Article  Google Scholar 

  • Yin KL, Yan TZ (1988) Statistical prediction model for slope instability of metamorphosed rocks. In: Proceedings of the 5th international symposium on landslides, Lausanne, Switzerland. 2: 1269–1272.

    Google Scholar 

  • Yin KL, Yan TZ (1996) Landslide prediction and relevant models. Chinese Journal of Rock Mechanics and Engineering 15(1): 1–8. (In Chinese)

    Google Scholar 

  • Youssef AM, Pradhan B, Jebur MN, et al. (2015) Landslide susceptibility mapping using ensemble bivariate and multivariate statistical models in Fayfa area, Saudi Arabia. Environmental Earth Sciences 73(7): 3745–3761. DOI: 10.1007/s12665-014-3661-3

    Article  Google Scholar 

  • Zhu L, Huang JF (2006) GIS-based logistic regression method for landslide susceptibility mapping in regional scale. Journal of Zhejiang University Science A 7(12): 2007–2017. DOI: 10.1631/jzus.2006.A2007

    Article  Google Scholar 

  • Zhu LF, Wu XC, Yin KL, et al. (2004) Risk zonation of landslide in China based on information content model. Journal of Earth Sciences and Environment 26(3): 52–56. (In Chinese)

    Google Scholar 

Download references

Acknowledgements

This research was supported by the Project of the 12th Five-year National Sci-Tech Support Plan of China (2011BAK12B09) and China Special Project of Basic Work of Science and Technology (2011FY110100-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-shuang Zhang.

Additional information

http://orcid.org/0000-0003-1081-9127

http://orcid.org/0000-0002-8306-6464

http://orcid.org/0000-0001-8675-1304

http://orcid.org/0000-0002-4372-3431

http://orcid.org/0000-0003-3063-2546

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Gl., Zhang, Ys., Iqbal, J. et al. Landslide susceptibility mapping using an integrated model of information value method and logistic regression in the Bailongjiang watershed, Gansu Province, China. J. Mt. Sci. 14, 249–268 (2017). https://doi.org/10.1007/s11629-016-4126-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11629-016-4126-9

Keywords

Navigation