Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

An integer programming approach for the search of discretization orders in distance geometry problems

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

Discretizable distance geometry problems (DDGPs) constitute a class of graph realization problems where the vertices can be ordered in such a way that the search space of possible positions becomes discrete, usually represented by a binary tree. Finding such vertex orders is an essential step to identify and solve DDGPs. Here we look for discretization orders that minimize an indicator of the size of the search tree. This paper sets the ground for exact solution of the optimal discretization order problem by proposing two integer programming formulations and a constraint generation procedure for an extended formulation. We discuss some theoretical aspects of the problem and numerical experiments on protein-like instances of DDGP are also reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Berman, H., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T., Weissig, H., Shindyalov, I., Bourne, P.: The protein data bank. Nucleic Acids Res. 28, 235–242 (2000)

    Article  Google Scholar 

  2. Cassioli, A., Gunluk, O., Lavor, C., Liberti, L.: Discretization vertex orders in distance geometry. Discrete Appl. Math. 197, 27–41 (2015)

    Article  MathSciNet  Google Scholar 

  3. Gonçalves, D.S., Mucherino, A.: Optimal partial discretization orders for discretizable distance geometry. Int. Trans. Oper. Res. 23(5), 947–967 (2016). doi:10.1111/itor.12249

    Article  MathSciNet  MATH  Google Scholar 

  4. Gouveia, L., Pesneau, P.: On extended formulations for the precedence constrained asymmetric traveling salesman problem. Networks 48(2), 77–89 (2006). doi:10.1002/net.20122

    Article  MathSciNet  MATH  Google Scholar 

  5. Grötschel, M., Jünger, M., Reinelt, G.: A Cutting plane algorithm for the linear ordering problem. Oper. Res. 32(6), 1195–1220 (1984). doi:10.1287/opre.32.6.1195. http://www.jstor.org/stable/170944. http://pubsonline.informs.org/doi/abs/10.1287/opre.32.6.1195

  6. Grötschel, M., Jünger, M., Reinelt, G.: Facets of the linear ordering polytope. Math. Program. 33(1), 43–60 (1985). doi:10.1007/BF01582010

    Article  MathSciNet  MATH  Google Scholar 

  7. Lavor, C., Lee, J., John, A.L.S., Liberti, L., Mucherino, A., Sviridenko, M.: Discretization orders for distance geometry problems. Optim. Lett. 6(4), 783–796 (2012). doi:10.1007/s11590-011-0302-6

    Article  MathSciNet  MATH  Google Scholar 

  8. Lavor, C., Liberti, L., Maculan, N., Mucherino, A.: The discretizable molecular distance geometry problem. Comput. Optim. Appl. 52(1), 115–146 (2012). doi:10.1007/s10589-011-9402-6

    Article  MathSciNet  MATH  Google Scholar 

  9. Liberti, L., Lavor, C., Maculan, N.: A branch-and-prune algorithm for the molecular distance geometry problem. Int. Trans. Oper. Res. 15(1), 1–17 (2008). doi:10.1111/j.1475-3995.2007.00622.x

    Article  MathSciNet  MATH  Google Scholar 

  10. Liberti, L., Lavor, C., Maculan, N., Mucherino, A.: Euclidean distance geometry and applications. SIAM Rev. 56, 3–69 (2014)

    Article  MathSciNet  Google Scholar 

  11. Miller, C., Tucker, A., Zemlin, R.: Integer programming formulations and the travelling salesman problems. J. ACM 7, 326–329 (1960)

    Article  Google Scholar 

  12. Mucherino, A.: MD-jeep: a software for distance geometry. http://www.antoniomucherino.it/en/mdjeep.php

  13. Saxe, J.B.: Embeddability of weighted graphs in \(k\)-space is strongly NP-hard. In: Proceedings of 17th Allerton Conference in Communications, Control and Computing, Monticello, IL, pp. 480–489 (1979)

  14. Tarjan, R.E.: Edge-disjoint spanning trees and depth-first search. Acta Inf. 6(2), 171–185 (1976). doi:10.1007/BF00268499

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérémy Omer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omer, J., Gonçalves, D.S. An integer programming approach for the search of discretization orders in distance geometry problems. Optim Lett 14, 439–452 (2020). https://doi.org/10.1007/s11590-017-1207-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-017-1207-9

Keywords

Navigation