Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

On the distance eigenvalues of design graphs

  • Published:
Ricerche di Matematica Aims and scope Submit manuscript

Abstract

A design graph is a regular bipartite graph in which any two distinct vertices of the same part have the same number of common neighbors. This class of graphs has a close relationship to strongly regular graphs. In this paper, we study the distance eigenvalues of the design graphs. Also, we will explicitly determine the distance eigenvalues of a class of design graphs, and determine the values for which the class is distance integral, that is, its distance eigenvalues are integers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aouchiche, M., Hansen, P.: Distance spectra of graphs: a survey. Linear Algebra Appl. 458, 301–386 (2014)

    Article  MathSciNet  Google Scholar 

  2. Atik, F., Panigrahi, P.: On the distance spectrum of distance regular graphs. Linear Algebra Its Appl. 478, 256–273 (2015)

    Article  MathSciNet  Google Scholar 

  3. Baliáska, K., Cvetković, D., Radosavljević, Z., Simić, S., Stevanović, D.: A survey on integral graphs. Publ. Elektroteh. Fak. Univ. Beogr. Ser. Mat. 13, 42–65 (2002)

    MathSciNet  Google Scholar 

  4. Bapat, R.B.: Graphs and Matrices, 2nd edn. Springer, New York (2014)

    Book  Google Scholar 

  5. Bapat, R.B., Jana, R., Pati, S.: The bipartite distance matrix of a nonsingular tree. Linear Algebra Its Appl. 631, 254–281 (2021)

    Article  MathSciNet  Google Scholar 

  6. Brouwer, A.E., Cohen, A.M., Neumaier, A.: Distance-Regular Graphs. Springer, New York (1989)

    Book  Google Scholar 

  7. Brualdi, R.A.: Introductory Combinatorics, 5th edn. Chapman and Hall, CRC Press, Boca Raton (2009)

    Google Scholar 

  8. Godsil, C., Royle, G.: Algebraic Graph Theory. Springer, New York (2001)

    Book  Google Scholar 

  9. Harary, F., Schwenk, A.J.: Which graphs have integral spectra? In: Bari, R., Harary, F. (eds.) Graphs and Combinatorics (Proc. Capital Conf., George Washington Univ., Washington, D.C., 1973). Lecture Notes in Mathematics, vol. 406, pp. 45–51. Springer, Berlin (1974)

    Google Scholar 

  10. Lin, H., Shu, J., Xue, J., Zhang, Y.: A survey on distance spectra of graphs. Adv. Math. (China) 50(1), 29–76 (2021)

    MathSciNet  Google Scholar 

  11. Lu, L., Huang, Q.: Distance eigenvalues of \(B (n, k)\). Linear Multilinear Algebra 69(11), 2078–2092 (2021). https://doi.org/10.1080/03081087.2019.1659221

    Article  MathSciNet  Google Scholar 

  12. Mirafzal, S.M.: A new class of integral graphs constructed from the hypercube. Linear Algebra Appl. 558, 186–194 (2018)

    Article  MathSciNet  Google Scholar 

  13. Mirafzal, S.M., Ziaee, M.: Some algebraic aspects of enhanced Johnson graphs. Acta Math. Univ. Comen. 88(2), 257–66 (2019)

    MathSciNet  Google Scholar 

  14. Mirafzal, S.M., Zafari, A.: Some algebraic properties of bipartite Kneser graphs. Ars Comb. 153, 3–14 (2020)

    MathSciNet  Google Scholar 

  15. Mirafzal, S.M.: The automorphism group of the bipartite Kneser graph. Proc. Math. Sci. (2019). https://doi.org/10.1007/s12044-019-0477-9

    Article  MathSciNet  Google Scholar 

  16. Mirafzal, S.M.: Cayley properties of the line graphs induced by consecutive layers of the hypercube. Bull Malays. Math. Sci. Soc. 1, 1 (2020). https://doi.org/10.1007/s40840-020-01009-3

    Article  Google Scholar 

  17. Mirafzal, S.M.: On the automorphism groups of connected bipartite irreducible graphs. Proc. Math. Sci. (2020). https://doi.org/10.1007/s12044-020-0589-1

    Article  MathSciNet  Google Scholar 

  18. Mirafzal, S.M.: The line graph of the crown graph is distance integral. Linear Multilinear Algebra (2022). https://doi.org/10.1080/03081087.2022.2040941

    Article  Google Scholar 

  19. Mirafzal, S.M.: Some remarks on the square graph of the hypercube. Ars Math. Contemp. 23(2) (2023)

  20. Mirafzal, S.M., Kogani, R.: On determining the distance spectrum of a class of distance integral graphs. J. Algebr. Syst. 10(2), 299–308 (2023)

    MathSciNet  Google Scholar 

  21. Mirafzal, S.M.: Some new classes of distance integral graphs constructed from integral graphs. J. Linear Topol. Algebra 12(01), 43–47 (2023)

    Google Scholar 

  22. Nica, B.: A Brief Introduction to Spectral Graph Theory. EMS Publishing House, Zuerich (2018)

    Book  Google Scholar 

  23. Pokorný, M., Híc, P., Stevanović, D., Milos̆ević, M.: On distance integral graphs. Discrete Math. 338, 1784–1792 (2015)

  24. Stephen, W.: Wolfram Mathematica 8

  25. Wu, Y., Zhang, X., Feng, L., Wu, T.: Distance and adjacency spectra and eigenspaces for three (di) graph lifts: a unified approach. Linear Algebra Its Appl. 672, 147–181 (2023)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author is thankful to the anonymous reviewers for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Morteza Mirafzal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirafzal, S.M. On the distance eigenvalues of design graphs. Ricerche mat 73, 2759–2769 (2024). https://doi.org/10.1007/s11587-023-00794-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11587-023-00794-w

Keywords

Mathematics Subject Classification

Navigation