Abstract
Motion-compensated frame-rate up-conversion (MC-FRUC) often exploits either bilateral motion estimation (ME) or unidirectional ME with a fixed block size, which constrains the perceptual quality of up-converted video. In this paper, an advanced MC-FRUC approach is proposed by exploiting hierarchical prediction-based motion vector refinement. To reduce block mismatching in texture regions and color areas, an adaptive multi-layered block matching criterion is designed to extract color and edge information, which is integrated with motion information as constraint term. A hierarchical prediction-based motion vector refinement approach is proposed to obtain more accurate and dense motion vector fields (MVFs). To eliminate the outliers of MVFs, a robust dual-weighted motion vector smoothing scheme is adopted by using both spatial correlation and reliability of neighboring blocks. Experimental results show that the proposed approach has low computational complexity and outperforms state-of-the-art works in both objective and subjective qualities of interpolated frames.
Similar content being viewed by others
References
Dai, W., Shen, Y., Tang, X., et al.: Sparse representation with spatio-temporal online dictionary learning for promising video coding. IEEE Trans. Image Process. 25(10), 4580–4595 (2016)
Kaviani, H.R., Shirani, S.: Frame rate upconversion using optical flow and patch-based reconstruction. IEEE Trans. Circuits Syst. Video Technol. 26(9), 1581–1594 (2016)
Li, R., Liu, H., Liu, Z., et al.: Motion-compensated frame interpolation using patch-based sparseland model. Signal Process. Image Commun. 54, 36–48 (2017)
Dikbas, S., Arici, T., Altunbasak, Y.: Fast motion estimation with interpolation-free sub-sample accuracy. IEEE Trans. Circuits Syst. Video Technol. 20(7), 1047–1051 (2010)
Wang, D., Vincent, A., Blanchfield, P., et al.: Motion-compensated frame rate up-conversion—part II: new algorithms for frame interpolation. IEEE Trans. Broadcast. 56(2), 142–149 (2010)
Wang, C., Zhang, L., He, Y., et al.: Frame rate up-conversion using trilateral filtering. IEEE Trans. Circuits Syst. Video Technol. 20(6), 886–893 (2010)
Kang, S.J., Cho, K.R., Kim, Y.H.: Motion compensated frame rate up-conversion using extended bilateral motion estimation. IEEE Trans. Consum. Electron. 53(4), 1759–1767 (2007)
Li, R., Liu, H., Chen, J., et al.: Wavelet pyramid based multi-resolution bilateral motion estimation for frame rate up-conversion. IEICE Trans. Inf. Syst. 99(1), 208–218 (2016)
Choi, B.D., Han, J.W., Kim, C.S., et al.: Motion-compensated frame interpolation using bilateral motion estimation and adaptive overlapped block motion compensation. IEEE Trans. Circuits Syst. Video Technol. 17(4), 407–416 (2007)
Kang, S.J., Yoo, S., Kim, Y.H.: Dual motion estimation for frame rate up-conversion. IEEE Trans. Circuits Syst. Video Technol. 20(12), 1909–1914 (2010)
Tsai, T.H., Lin, H.Y.: High visual quality particle based frame rate up conversion with acceleration assisted motion trajectory calibration. J. Disp. Technol. 8(6), 341–351 (2012)
Zhai, J., Yu, K., Li, J., et al.: A low complexity motion compensated frame interpolation method. In: IEEE International Symposium on Circuits and Systems (ISCAS), pp. 4927–4930. IEEE (2005)
Yoo, D.G., Kang, S.J., Kim, Y.H.: Direction-select motion estimation for motion-compensated frame rate up-conversion. J. Disp. Technol. 9(10), 840–850 (2013)
Kim, U.S., Sunwoo, M.H.: New frame rate up-conversion algorithms with low computational complexity. IEEE Trans. Circuits Syst. Video Technol. 24(3), 384–393 (2014)
Jeong, S.G., Lee, C., Kim, C.S.: Exemplar-based frame rate up-conversion with congruent segmentation. In: IEEE International Conference on Image Processing (ICIP), pp. 845–848 (2012)
Benois-Pineau, J., Nicolas, H.: A new method for region-based depth ordering in a video sequence: application to frame interpolation. J. Vis. Commun. Image Represent. 13(3), 363–385 (2002)
Orchard, M.T., Sullivan, G.J.: Overlapped block motion compensation: an estimation-theoretic approach. IEEE Trans. Image Process. 3(5), 693–699 (1994)
Zhang, Y., Zhao, D., Ma, S., et al.: A motion-aligned auto-regressive model for frame rate up conversion. IEEE Trans. Image Process. 19(5), 1248–1258 (2010)
Li, R., Gan, Z., Cui, Z., et al.: Multi-channel mixed-pattern based frame rate up-conversion using spatio-temporal motion vector refinement and dual-weighted overlapped block motion compensation. J. Disp. Technol. 10(12), 1010–1023 (2014)
Bayer, B.E.: Color imaging array: U.S. Patent 3,971,065[P]. 1976-7-20
Castagno, R., Haavisto, P., Ramponi, G.: A method for motion adaptive frame rate up-conversion. IEEE Trans. Circuits Syst. Video Technol. 6(5), 436–446 (1996)
Liu, H., Xiong, R., Zhao, D., et al.: Multiple hypotheses Bayesian frame rate up-conversion by adaptive fusion of motion-compensated interpolations. IEEE Trans. Circuits Syst. Video Technol. 22(8), 1188–1198 (2012)
Choi, B.T., Lee, S.H., Park, Y.J., et al.: Frame rate up-conversion using the wavelet transform. In: IEEE International Conference on Consumer Electronics (ICCE), pp. 172–173 (2000)
Acknowledgements
This work is supported in part by the National Natural Science Foundation of China (61572183, 61379143, 61232016, U1405254).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
He, J., Yang, G., Song, J. et al. Hierarchical prediction-based motion vector refinement for video frame-rate up-conversion. J Real-Time Image Proc 17, 259–273 (2020). https://doi.org/10.1007/s11554-018-0767-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11554-018-0767-y