Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Constructing the rodent stereotaxic brain atlas: a survey

  • Review
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

The stereotaxic brain atlas is a fundamental reference tool commonly used in the field of neuroscience. Here we provide a brief history of brain atlas development and clarify three key conceptual elements of stereotaxic brain atlasing: brain image, atlas, and stereotaxis. We also refine four technical indices for evaluating the construction of atlases: the quality of staining and labeling, the granularity of delineation, spatial resolution, and the precision of spatial location and orientation. Additionally, we discuss state-of-the-art technologies and their trends in the fields of image acquisition, stereotaxic coordinate construction, image processing, anatomical structure recognition, and publishing: the procedures of brain atlas illustration. We believe that the use of single-cell resolution and micron-level location precision will become a future trend in the study of the stereotaxic brain atlas, which will greatly benefit the development of neuroscience.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adler, D.H., Pluta, J., Kadivar, S., Craige, C., Gee, J.C., Avants, B.B., and Yushkevich, P.A. (2014). Histology-derived volumetric annotation of the human hippocampal subfields in postmortem MRI. NeuroImage 84, 505–523.

    Article  PubMed  Google Scholar 

  • AIBS. (2008). Technical White Paper: Allen Reference Atlas—version 1 (2008). Seattle: Allen Institute for Brain Science.

    Google Scholar 

  • AIBS. (2011). Technical White Paper: Allen Reference Atlas—version 2 (2011). Seattle: Allen Institute for Brain Science.

    Google Scholar 

  • AIBS. (2015). Technical White Paper: Allen Mouse Common Coordinate Framework. Seattle: Allen Institute for Brain Science.

    Google Scholar 

  • Ali, A.A., Dale, A.M., Badea, A., and Johnson, G.A. (2005). Automated segmentation of neuroanatomical structures in multispectral MR microscopy of the mouse brain. NeuroImage 27, 425–435.

    Article  PubMed  Google Scholar 

  • Allan, C., Burel, J.M., Moore, J., Blackburn, C., Linkert, M., Loynton, S., Macdonald, D., Moore, W.J., Neves, C., Patterson, A., et al. (2012). OMERO: flexible, model-driven data management for experimental biology. Nat Methods 9, 245–253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amunts, K., Ebell, C., Muller, J., Telefont, M., Knoll, A., and Lippert, T. (2016). The human brain project: creating a European research infrastructure to decode the human brain. Neuron 92, 574–581.

    Article  CAS  PubMed  Google Scholar 

  • Arganda-Carreras, I., Sorzano, C.O.S., Marabini, R., Carazo, J.M., Ortizde-Solorzano, C., and Kybic, J. (2006). Consistent and elastic registration of histological sections using vector-spline regularization. In: Beichel, R.R., and Sonka, M., eds. Computer Vision Approaches to Medical Image Analysis. Heidelberg: Springer. 85–95.

    Chapter  Google Scholar 

  • Ascoli, G.A., Alonso-Nanclares, L., Anderson, S.A., Barrionuevo, G., Benavides-Piccione, R., Burkhalter, A., Buzsáki, G., Cauli, B., Defelipe, J., Fairén, A., et al. (2008). Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nat Rev Neurosci 9, 557–568.

    Article  CAS  PubMed  Google Scholar 

  • Ascoli, G.A., Maraver, P., Nanda, S., Polavaram, S., and Armañanzas, R. (2017). Win-win data sharing in neuroscience. Nat Methods 14, 112–116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avants, B.B., Tustison, N.J., and Song, G. (2009). Advanced normalization tools: V1.0. Insight J 2, 1–35.

    Google Scholar 

  • Avants, B.B., Tustison, N.J., Stauffer, M., Song, G., Wu, B., and Gee, J.C. (2014). The Insight ToolKit image registration framework. Front Neuroinform 8, 44.

    Article  PubMed  PubMed Central  Google Scholar 

  • Azevedo, F.A.C., Carvalho, L.R.B., Grinberg, L.T., Farfel, J.M., Ferretti, R. E.L., Leite, R.E.P., Jacob Filho, W., Lent, R., and Herculano-Houzel, S. (2009). Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol 513, 532–541.

    Article  PubMed  Google Scholar 

  • Badea, A., Ali-Sharief, A.A., and Johnson, G.A. (2007). Morphometric analysis of the C57BL/6J mouse brain. NeuroImage 37, 683–693.

    Article  CAS  PubMed  Google Scholar 

  • Bakker, R., Tiesinga, P., and Kötter, R. (2015). The scalable brain atlas: instant web-based access to public brain atlases and related content. Neuroinformatics 13, 353–366.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bakker, R., Toro, R., and Tiesinga, P. (2017). Scalable brain atlas composer: web-based brain atlasing toolkit for integrative data exploration. F1000Res 720270, 1113110.

    Google Scholar 

  • Bard, J.B.L., Kaufman, M.H., Dubreuil, C., Brune, R.M., Burger, A., Baldock, R.A., and Davidson, D.R. (1998). An internet-accessible database of mouse developmental anatomy based on a systematic nomenclature. Mech Dev 74, 111–120.

    Article  CAS  PubMed  Google Scholar 

  • Betzel, R.F., and Bassett, D.S. (2017). Multi-scale brain networks. NeuroImage 160, 73–83.

    Article  PubMed  Google Scholar 

  • Bienkowski, M.S., Bowman, I., Song, M.Y., Gou, L., Ard, T., Cotter, K., Zhu, M., Benavidez, N.L., Yamashita, S., Abu-Jaber, J., et al. (2018). Integration of gene expression and brain-wide connectivity reveals the multiscale organization of mouse hippocampal networks. Nat Neurosci 21, 1628–1643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bjerke, I.E., Øvsthus, M., Papp, E.A., Yates, S.C., Silvestri, L., Fiorilli, J., Pennartz, C.M.A., Pavone, F.S., Puchades, M.A., Leergaard, T.B., et al. (2018). Data integration through brain atlasing: human brain project tools and strategies. Eur Psychiatr 50, 70–76.

    Article  Google Scholar 

  • Blackwood, H.R., Young, A.H., McQueen, J.K., Martin, M.J., Roxborough, H.M., Muir, W.J., M.St. Clair, D., and Kean, D.M. (1991). Magnetic resonance imaging in schizophrenia: altered brain morphology associated with P300 abnormalities and eye tracking dysfunction. Biol Psychiatry 30, 753–769.

    Article  CAS  PubMed  Google Scholar 

  • Bock, N.A., Kovacevic, N., Lipina, T.V., Roder, J.C., Ackerman, S.L., and Henkelman, R.M. (2006). In vivo magnetic resonance imaging and semiautomated image analysis extend the brain phenotype for cdf/cdf mice. J Neurosci 26, 4455–4459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bota, M., Dong, H.W., and Swanson, L.W. (2005). Brain architecture management system. Neuroinformatics 3, 15–48.

    Article  PubMed  Google Scholar 

  • Bowden, D.M., and Dubach, M. (2005). BrainInfo: A Portal to Neuroanatomy on the Web. Seattle: National Primate Research Center, University of Washington.

    Google Scholar 

  • Bowden, D.M., Johnson, G.A., Zaborsky, L., Green, W.D.K., Moore, E., Badea, A., Dubach, M.F., and Bookstein, F.L. (2011). A symmetrical Waxholm canonical mouse brain for NeuroMaps. J Neurosci Methods 195, 170–175.

    Article  PubMed  Google Scholar 

  • Bowden, D.M., Song, E., Kosheleva, J., and Dubach, M.F. (2012). NeuroNames: an ontology for the BrainInfo portal to neuroscience on the web. Neuroinformatics 10, 97–114.

    Article  PubMed  PubMed Central  Google Scholar 

  • Brodmann, K. (1909). Vergleichende Lokalisationslehre der Großhirnrinde in Ihren Prinzipien Dargestellt Auf Grund des Zellenbaues. Leipzig: Barth.

    Google Scholar 

  • Campbell, A.W. (1903). Histological studies on cerebral localisation. Proc R Soc 72, 488–492.

    Google Scholar 

  • Chen, Y., McElvain, L.E., Tolpygo, A.S., Ferrante, D., Friedman, B., Mitra, P.P., Karten, H.J., Freund, Y., and Kleinfeld, D. (2019). An active texture-based digital atlas enables automated mapping of structures and markers across brains. Nat Methods 16, 341–350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiang, A.S., Lin, C.Y., Chuang, C.C., Chang, H.M., Hsieh, C.H., Yeh, C. W., Shih, C.T., Wu, J.J., Wang, G.T., Chen, Y.C., et al. (2011). Three-dimensional reconstruction of brain-wide wiring networks in drosophila at single-cell resolution. Curr Biol 21, 1–11.

    Article  CAS  PubMed  Google Scholar 

  • Chon, U., Vanselow, D.J., Cheng, K.C., and Kim, Y. (2019). Enhanced and unified anatomical labeling for a common mouse brain atlas. Nat Commun 10, 5067.

    Article  PubMed  PubMed Central  Google Scholar 

  • Corson, J., Aldridge, A., Wilmoth, K., and Erisir, A. (2012). A survey of oral cavity afferents to the rat nucleus tractus solitarii. J Comp Neurol 520, 495–527.

    Article  PubMed  PubMed Central  Google Scholar 

  • Davie, K., Janssens, J., Koldere, D., De Waegeneer, M., Pech, U., Kreft, Ł., Aibar, S., Makhzami, S., Christiaens, V., Bravo González-Blas, C., et al. (2018). A single-cell transcriptome atlas of the aging drosophila brain. Cell 174, 982–998.e20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding, S.L., Royall, J.J., Sunkin, S.M., Ng, L., Facer, B.A.C., Lesnar, P., Guillozet-Bongaarts, A., McMurray, B., Szafer, A., Dolbeare, T.A., et al. (2016). Comprehensive cellular-resolution atlas of the adult human brain. J Comp Neurol 524, 3127–3481.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ding, W., Li, A., Wu, J., Yang, Z., Meng, Y., Wang, S., and Gong, H. (2013). Automatic macroscopic density artefact removal in a Nisslstained microscopic atlas of whole mouse brain. J Microsc 251, 168–177.

    Article  CAS  PubMed  Google Scholar 

  • Dong, H.W. (2008). Allen Reference Atlas: A Digital Color Brain Atlas of the C57Bl/6J Male Mouse. New Jersey: John Wiley & Sons.

    Google Scholar 

  • Dorr, A.E., Lerch, J.P., Spring, S., Kabani, N., and Henkelman, R.M. (2008). High resolution three-dimensional brain atlas using an average magnetic resonance image of 40 adult C57Bl/6J mice. NeuroImage 42, 60–69.

    Article  CAS  PubMed  Google Scholar 

  • Ecker, J.R., Geschwind, D.H., Kriegstein, A.R., Ngai, J., Osten, P., Polioudakis, D., Regev, A., Sestan, N., Wickersham, I.R., and Zeng, H. (2017). The BRAIN Initiative Cell Census Consortium: lessons learned toward generating a comprehensive brain cell atlas. Neuron 96, 542–557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Falougy, H., and Benuska, J. (2006). History, anatomical nomenclature, comparative anatomy and functions of the hippocampal formation. Bratisl Lek Listy 107, 103–106.

    CAS  PubMed  Google Scholar 

  • Ferguson, A.R., Nielson, J.L., Cragin, M.H., Bandrowski, A.E., and Martone, M.E. (2014). Big data from small data: data-sharing in the ‘long tail’ of neuroscience. Nat Neurosci 17, 1442–1447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franklin, K.B.J., and Paxinos, G. (1997). The Mouse Brain in Stereotaxic Coordinates. San Diego: Academic Press.

    Google Scholar 

  • Friedmann, D., Pun, A., Adams, E.L., Lui, J.H., Kebschull, J.M., Grutzner, S.M., Castagnola, C., Tessier-Lavigne, M., and Luo, L. (2020). Mapping mesoscale axonal projections in the mouse brain using a 3D convolutional network. Proc Natl Acad Sci USA 117, 11068–11075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gahr, M. (1997). How should brain nuclei be delineated? Consequences for developmental mechanisms and for correlations of area size, neuron numbers and functions of brain nuclei. Trends Neurosci 20, 58–62.

    Article  CAS  PubMed  Google Scholar 

  • Geisler, S., Andres, K.H., and Veh, R.W. (2003). Morphologic and cytochemical criteria for the identification and delineation of individual subnuclei within the lateral habenular complex of the rat. J Comp Neurol 458, 78–97.

    Article  PubMed  Google Scholar 

  • Gong, H., Zeng, S., Yan, C., Lv, X., Yang, Z., Xu, T., Feng, Z., Ding, W., Qi, X., Li, A., et al. (2013). Continuously tracing brain-wide longdistance axonal projections in mice at a one-micron voxel resolution. NeuroImage 74, 87–98.

    Article  PubMed  Google Scholar 

  • Gong, H., Xu, D., Yuan, J., Li, X., Guo, C., Peng, J., Li, Y., Schwarz, L.A., Li, A., Hu, B., et al. (2016). High-throughput dual-colour precision imaging for brain-wide connectome with cytoarchitectonic landmarks at the cellular level. Nat Commun 7, 12142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herculano-Houzel, S. (2009). The human brain in numbers: a linearly scaled-up primate brain. Front Hum Neurosci 3, 1.

    Article  Google Scholar 

  • Hess, A., Hinz, R., Keliris, G.A., and Boehm-Sturm, P. (2018). On the usage of brain atlases in neuroimaging research. Mol Imag Biol 20, 742–749.

    Article  Google Scholar 

  • Hintiryan, H., Foster, N.N., Bowman, I., Bay, M., Song, M.Y., Gou, L., Yamashita, S., Bienkowski, M.S., Zingg, B., Zhu, M., et al. (2016). The mouse cortico-striatal projectome. Nat Neurosci 19, 1100–1114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hof, P.R., Young, W.G., Bloom, F.E., Belichenko, P.V., and Celio, M.R. (2000). Comparative Cytoarchitectonic Atlas of the C57BL/6 and 129/Sv Mouse Brains. Amsterdam: The Netherlands: Elsevier.

    Google Scholar 

  • Honey, C.J., Thivierge, J.P., and Sporns, O. (2010). Can structure predict function in the human brain? NeuroImage 52, 766–776.

    Article  PubMed  Google Scholar 

  • Huang, Z.J., and Luo, L. (2015). It takes the world to understand the brain. Science 350, 42–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imam, F.T., Larson, S.D., Bandrowski, A., Grethe, J.S., Gupta, A., and Martone, M.E. (2012). Development and use of ontologies inside the neuroscience information framework: a practical approach. Front Gene 3, 111.

    Article  Google Scholar 

  • Insel, T.R., Landis, S.C., and Collins, F.S. (2013). The NIH BRAIN Initiative. Science 340, 687–688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iqbal, A., Khan, R., and Karayannis, T. (2019). Developing a brain atlas through deep learning. Nat Mach Intell 1, 277–287.

    Article  Google Scholar 

  • Iriki, A., Okano, H.J., Sasaki, E., and Okano, H. (2018). The 3-Dimensional Atlas of the Marmoset Brain: Reconstructible in Stereotaxic coordinates. Tokyo: Springer.

    Book  Google Scholar 

  • Jagalur, M., Pal, C., Learned-Miller, E., Zoeller, R.T., and Kulp, D. (2007). Analyzing in situ gene expression in the mouse brain with image registration, feature extraction and block clustering. BMC Bioinf 8, S5.

    Article  Google Scholar 

  • Jensen, E. (2014). Technical review: In situ hybridization. Anat Rec 297, 1349–1353.

    Article  Google Scholar 

  • Jiang, T.Z., Liu, Y., and Li, Y.H. (2009). Brain networks: from anatomy to dynamics (in Chinese). Chin Bull Life Sci 21, 181–188.

    Google Scholar 

  • Johnson, G.A., Badea, A., Brandenburg, J., Cofer, G., Fubara, B., Liu, S., and Nissanov, J. (2010). Waxholm space: an image-based reference for coordinating mouse brain research. NeuroImage 53, 365–372.

    Article  PubMed  Google Scholar 

  • Johnson, H.J., and Christensen, G.E. (2002). Consistent landmark and intensity-based image registration. IEEE Trans Med Imag 21, 450–461.

    Article  CAS  Google Scholar 

  • Jones, S.E., Buchbinder, B.R., and Aharon, I. (2000). Three-dimensional mapping of cortical thickness using Laplace’s Equation. Hum Brain Mapp 11, 12–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jongen-Rêlo, A.L., Voorn, P., and Groenewegen, H.J. (1994). Immunohistochemical characterization of the shell and core territories of the nucleus accumbens in the rat. Eur J Neurosci 6, 1255–1264.

    Article  PubMed  Google Scholar 

  • Klein, A., and Tourville, J. (2012). 101 labeled brain images and a consistent human cortical labeling protocol. Front Neurosci 6, 171.

    Article  PubMed  PubMed Central  Google Scholar 

  • Klein, S., Staring, M., Murphy, K., Viergever, M.A., and Pluim, J.P.W. (2010). Elastix: a toolbox for intensity-based medical image registration. IEEE Trans Med Imag 29, 196–205.

    Article  Google Scholar 

  • König, J.F.R., and Klippel, R.A. (1963). The Rat Brain: A Stereotaxis Atlas of the Forebrain and Lower Parts of the Brain Stem. Baltimore: Williams and Wilkins.

    Google Scholar 

  • Kopf, J.D., Seiler, W., Palecki, G.S., and Kaufman, H.H. (1981). Head positioner. US patent 4 256 112.

    Google Scholar 

  • Kötter, R. (2004). Online retrieval, processing, and visualization of primate connectivity data from the CoCoMac database. Neuroinformatics 2, 127–144.

    Article  PubMed  Google Scholar 

  • Kovačević, N., Henderson, J.T., Chan, E., Lifshitz, N., Bishop, J., Evans, A.C., Henkelman, R.M., and Chen, X.J. (2005). A three-dimensional MRI atlas of the mouse brain with estimates of the average and variability. Cereb Cortex 15, 639–645.

    Article  PubMed  Google Scholar 

  • Kreutzberg, G.W. (1984). 100 years of Nissl staining. Trends Neurosci 7, 236–237.

    Article  Google Scholar 

  • Kuan, L., Li, Y., Lau, C., Feng, D., Bernard, A., Sunkin, S.M., Zeng, H., Dang, C., Hawrylycz, M., and Ng, L. (2015). Neuroinformatics of the Allen mouse brain connectivity atlas. Methods 73, 4–17.

    Article  CAS  PubMed  Google Scholar 

  • Landhuis, E. (2017). Neuroscience: big brain, big data. Nature 541, 559–561.

    Article  CAS  PubMed  Google Scholar 

  • Larson, S.D., and Martone, M.E. (2013). NeuroLex.org: an online framework for neuroscience knowledge. Front Neuroinform 7, 18.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee, E.F., Jacobs, R.E., Dinov, I., Leow, A., and Toga, A.W. (2005). Standard atlas space for C57BL/6J neonatal mouse brain. Anat Embryol 210, 245–263.

    Article  Google Scholar 

  • Lein, E.S., Hawrylycz, M.J., Ao, N., Ayres, M., Bensinger, A., Bernard, A., Boe, A.F., Boguski, M.S., Brockway, K.S., Byrnes, E.J., et al. (2007). Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168–176.

    Article  CAS  PubMed  Google Scholar 

  • Li, A., Gong, H., Zhang, B., Wang, Q., Yan, C., Wu, J., Liu, Q., Zeng, S., and Luo, Q. (2010). Micro-optical sectioning tomography to obtain a high-resolution atlas of the mouse brain. Science 330, 1404–1408.

    Article  CAS  PubMed  Google Scholar 

  • Loo, L., Simon, J.M., Xing, L., McCoy, E.S., Niehaus, J.K., Guo, J., Anton, E.S., and Zylka, M.J. (2019). Single-cell transcriptomic analysis of mouse neocortical development. Nat Commun 10, 134.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lowry, O.H., Roberts, N.R., Wu, M.L., Hixon, W.S., and Crawford, E.J. (1954). The quantitative histochemistry of brain. J Biol Chem 207, 19–37.

    Article  CAS  PubMed  Google Scholar 

  • Luo, Q.M. (2012). Brain imaging and brain networks (in Chinese). Prog Biochem Biophys 39, 497.

    Article  Google Scholar 

  • Luo, Q.M. (2017). Brainsmatics—bridging the brain science and brain-inspired artificial intelligence (in Chinese). Sci Sin Vitae 47, 1015–1024.

    Article  Google Scholar 

  • Ma, Y., Hof, P.R., Grant, S.C., Blackband, S.J., Bennett, R., Slatest, L., McGuigan, M.D., and Benveniste, H. (2005). A three-dimensional digital atlas database of the adult C57BL/6J mouse brain by magnetic resonance microscopy. Neuroscience 135, 1203–1215.

    Article  CAS  PubMed  Google Scholar 

  • MacKenzie-Graham, A., Lee, E.F., Dinov, I.D., Bota, M., Shattuck, D.W., Ruffins, S., Yuan, H., Konstantinidis, F., Pitiot, A., Ding, Y., et al. (2004). A multimodal, multidimensional atlas of the C57BL/6J mouse brain. J Anat 204, 93–102.

    Article  PubMed  PubMed Central  Google Scholar 

  • Madan, C.R. (2017). Advances in studying brain morphology: the benefits of open-access data. Front Hum Neurosci 11, 405.

    Article  PubMed  PubMed Central  Google Scholar 

  • Majka, P., Kublik, E., Furga, G., and Wójcik, D.K. (2012). Common atlas format and 3D brain atlas reconstructor: infrastructure for constructing 3D brain atlases. Neuroinformatics 10, 181–197.

    Article  PubMed  PubMed Central  Google Scholar 

  • Meesen, H., and Olszewski, J. (1949). A Cytoarchitectonic Atlas of the Rhombecephalon of the Rabbit. Basel: S. Karger.

    Google Scholar 

  • Mikula, S., Trotts, I., Stone, J.M., and Jones, E.G. (2007). Internet-enabled high-resolution brain mapping and virtual microscopy. NeuroImage 35, 9–15.

    Article  PubMed  Google Scholar 

  • Nelson, B. (2009). Data sharing: empty archives. Nature 461, 160–163.

    Article  CAS  PubMed  Google Scholar 

  • Ng, L., Zaslavsky, I., Nissanov, J., Puelles, L., Ruffins, S., Hawrylycz, M., Boline, J., Burger, A., Hashikawa, T., Johnson, G.A., et al. (2009). The INCF digital atlasing program: report on digital atlasing standards in the rodent brain. Nat Prec, doi: https://doi.org/10.1038/npre.2009.4000.1.

  • Ni, H., Tan, C., Feng, Z., Chen, S., Zhang, Z., Li, W., Guan, Y., Gong, H., Luo, Q., and Li, A. (2020). A robust image registration interface for large volume brain atlas. Sci Rep 10, 2139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh, S.W., Harris, J.A., Ng, L., Winslow, B., Cain, N., Mihalas, S., Wang, Q., Lau, C., Kuan, L., Henry, A.M., et al. (2014). A mesoscale connectome of the mouse brain. Nature 508, 207–214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okano, H., Sasaki, E., Yamamori, T., Iriki, A., Shimogori, T., Yamaguchi, Y., Kasai, K., and Miyawaki, A. (2016). Brain/MINDS: a Japanese national brain project for marmoset neuroscience. Neuron 92, 582–590.

    Article  CAS  PubMed  Google Scholar 

  • Palazzi, X., and Bordier, N. (2008). The Marmoset Brain in Stereotaxic Coordinates. New York: Springer.

    Book  Google Scholar 

  • Paul, C.A., Beltz, B., and Berger-Sweeney, J. (2008). The Nissl stain: a stain for cell bodies in brain sections. Cold Spring Harb Protoc 2008, pdb.prot4805.

  • Paxinos, G., and Franklin, K.B.J. (2001). The Mouse Brain in Stereotaxic Coordinates. 2nd ed. San Diego: Academic Press.

    Google Scholar 

  • Paxinos, G., and Franklin, K.B.J. (2004). The Mouse Brain in Stereotaxic Coordinates. Compact 2nd ed. San Diego: Academic Press.

    Google Scholar 

  • Paxinos, G., and Franklin, K.B.J. (2012). The Mouse Brain in Stereotaxic Coordinates. 4th ed. San Diego: Academic Press.

    Google Scholar 

  • Paxinos, G., Huang, X., and Toga, A.W. (1999). The Rhesus Monkey Brain in Stereotaxic Coordinates. San Diego: Academic Press.

    Google Scholar 

  • Paxinos, G., and Watson, C. (1982). The Rat Brain in Stereotaxic Coordinates. San Diego: Academic Press.

    Google Scholar 

  • Paxinos, G., and Watson, C. (2007). The Rat Brain in Stereotaxic Coordinates. 6th ed. San Diego: Academic Press.

    Google Scholar 

  • Paxinos, G., Watson, C., Pennisi, M., and Topple, A. (1985). Bregma, lambda and the interaural midpoint in stereotaxic surgery with rats of different sex, strain and weight. J Neurosci Methods 13, 139–143.

    Article  CAS  PubMed  Google Scholar 

  • Pellegrino, L.J., and Cushman, A.J. (1967). A Stereotaxic Atlas of the Rat Brain. New York: Appleton-Century-Crofts.

    Google Scholar 

  • Pellegrino, L.J., Pellegrino, A.S., and Cushman, A.J. (1979). A Stereotaxic Atlas of the Rat Brain. New York: Plenum Press.

    Google Scholar 

  • Peng, J., Long, B., Yuan, J., Peng, X., Ni, H., Li, X., Gong, H., Luo, Q., and Li, A. (2017). A quantitative analysis of the distribution of CRH neurons in whole mouse brain. Front Neuroanat 11, 63.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ping, L., Duong, D.M., Yin, L., Gearing, M., Lah, J.J., Levey, A.I., and Seyfried, N.T. (2018). Global quantitative analysis of the human brain proteome in Alzheimer’s and Parkinson’s disease. Sci Data 5, 180036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poldrack, R.A., Barch, D.M., Mitchell, J.P., Wager, T.D., Wagner, A.D., Devlin, J.T., Cumba, C., Koyejo, O., and Milham, M.P. (2013). Toward open sharing of task-based fMRI data: the OpenfMRI project. Front Neuroinform 7, 12.

    Article  PubMed  PubMed Central  Google Scholar 

  • Poldrack, R.A., and Farah, M.J. (2015). Progress and challenges in probing the human brain. Nature 526, 371–379.

    Article  CAS  PubMed  Google Scholar 

  • Poldrack, R.A., and Gorgolewski, K.J. (2014). Making big data open: data sharing in neuroimaging. Nat Neurosci 17, 1510–1517.

    Article  CAS  PubMed  Google Scholar 

  • Poo, M.M. (2019). The three main development direction of brain science study (in Chinese). Bull Chin Acad Sci 34, 807–813.

    Google Scholar 

  • Puelles, L., Martinez-de-la-Torre, M., Martinez, S., Watson, C., and Paxinos, G. (2007). The Chick Brain in Stereotaxic Coordinates: An Atlas Correlating Avian and Mammalian Neuroanatomy. San Diego: Academic Press.

    Google Scholar 

  • Ragan, T., Kadiri, L.R., Venkataraju, K.U., Bahlmann, K., Sutin, J., Taranda, J., Arganda-Carreras, I., Kim, Y., Seung, H.S., and Osten, P. (2012). Serial two-photon tomography for automated ex vivo mouse brain imaging. Nat Methods 9, 255–258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reardon, S. (2017). A giant neuron found wrapped around entire mouse brain. Nature 543, 14–15.

    Article  CAS  PubMed  Google Scholar 

  • Remington, L.A., and Goodwin, D. (2011). Clinical Anatomy and Physiology of the Visual System. 3rd ed. Oxford: Butterworth-Heinemann.

    Google Scholar 

  • Schenker, N.M., Buxhoeveden, D.P., Blackmon, W.L., Amunts, K., Zilles, K., and Semendeferi, K. (2008). A comparative quantitative analysis of cytoarchitecture and minicolumnar organization in Broca’s area in humans and great apes. J Comp Neurol 510, 117–128.

    Article  PubMed  Google Scholar 

  • Sergejeva, M., Papp, E.A., Bakker, R., Gaudnek, M.A., Okamura-Oho, Y., Boline, J., Bjaalie, J.G., and Hess, A. (2015). Anatomical landmarks for registration of experimental image data to volumetric rodent brain atlasing templates. J Neurosci Methods 240, 161–169.

    Article  PubMed  Google Scholar 

  • Sharief, A.A., Badea, A., Dale, A.M., and Johnson, G.A. (2008). Automated segmentation of the actively stained mouse brain using multi-spectral MR microscopy. NeuroImage 39, 136–145.

    Article  PubMed  Google Scholar 

  • Simmons, D.M., and Swanson, L.W. (2009). Comparing histological data from different brains: Sources of error and strategies for minimizing them. Brain Res Rev 60, 349–367.

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith, G.E. (1907). A new topographical survey of the human cerebral cortex, being an account of the distribution of the anatomically distinct cortical areas and their relationship to the cerebral sulci. J Anat Physiol 41, 237–254.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sousa, A.M.M., Meyer, K.A., Santpere, G., Gulden, F.O., and Sestan, N. (2017). Evolution of the human nervous system function, structure, and development. Cell 170, 226–247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spires-Jones, T.L., Poirazi, P., and Grubb, M.S. (2016). Opening up: open access publishing, data sharing, and how they can influence your neuroscience career. Eur J Neurosci 43, 1413–1419.

    Article  CAS  PubMed  Google Scholar 

  • Sporns, O., Tononi, G., and Kötter, R. (2005). The human connectome: a structural description of the human brain. PLoS Comp Biol 1, e42.

    Article  Google Scholar 

  • Stalling, D., Westerhoff, M., and Hege, H.C. (2005). Amira: a highly interactive system for visual data analysis. In: Hansen, C., and Johnson, C., eds. The Visualization Handbook. Oxford: Elsevier. 749–767.

    Chapter  Google Scholar 

  • Steinmetz, N.A., Koch, C., Harris, K.D., and Carandini, M. (2018). Challenges and opportunities for large-scale electrophysiology with neuropixels probes. Curr Opin Neurobiol 50, 92–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sudhyadhom, A., McGregor, K., Okun, M.S., Foote, K.D., Trinastic, J., Crosson, B., and Bova, F.J. (2013). Delineation of motor and somatosensory thalamic subregions utilizing probabilistic diffusion tractography and electrophysiology. J Magn Reson Imag 37, 600–609.

    Article  Google Scholar 

  • Sun, Q., Li, X., Ren, M., Zhao, M., Zhong, Q., Ren, Y., Luo, P., Ni, H., Zhang, X., Zhang, C., et al. (2019). A whole-brain map of long-range inputs to GABAergic interneurons in the mouse medial prefrontal cortex. Nat Neurosci 22, 1357–1370.

    Article  CAS  PubMed  Google Scholar 

  • Sun, Y., Nguyen, A.Q., Nguyen, J.P., Le, L., Saur, D., Choi, J., Callaway, E. M., and Xu, X. (2014). Cell-type-specific circuit connectivity of hippocampal CA1 revealed through Cre-dependent rabies tracing. Cell Rep 7, 269–280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swanson, L.W. (1992). Brain Maps: Structure of the Rat Brain. Amsterdam: Elsevier.

    Google Scholar 

  • Swanson, L.W. (2004). Brain Maps: Structure of the Rat Brain. 3rd ed. Amsterdam: Elsevier.

    Google Scholar 

  • Swanson, L.W. (2018). Brain maps 4.0—Structure of the rat brain: An open access atlas with global nervous system nomenclature ontology and flatmaps. J Comp Neurol 526, 935–943.

    Article  PubMed  PubMed Central  Google Scholar 

  • Talairach, J., and Szikla, G. (1967). Atlas of Stereotaxic Anatomy of the Telencephalon. Paris: Masson.

    Google Scholar 

  • Talairach, J., and Tournoux, P. (1988). Co-planar Stereotaxic Atlas of the Human Brain. 3-Dimensional Proportional System: An Approach to Cerebral Imaging. New York: Thieme Medical.

    Google Scholar 

  • Tan, C., Guan, Y., Feng, Z., Ni, H., Zhang, Z., Wang, Z., Li, X., Yuan, J., Gong, H., Luo, Q., et al. (2020). DeepBrainSeg: automated brain region segmentation for micro-optical images with a convolutional neural network. Front Neurosci 14, 179.

    Article  PubMed  PubMed Central  Google Scholar 

  • Trotts, I., Mikula, S., and Jones, E.G. (2007). Interactive visualization of multiresolution image stacks in 3D. NeuroImage 35, 1038–1043.

    Article  PubMed  Google Scholar 

  • Turk, E., Scholtens, L.H., and van den Heuvel, M.P. (2016). Cortical chemoarchitecture shapes macroscale effective functional connectivity patterns in macaque cerebral cortex. Hum Brain Mapp 37, 1856–1865.

    Article  PubMed  PubMed Central  Google Scholar 

  • Turner, J.A., Mejino, J.L.V., Brinkley, J.F., Detwiler, L.T., Lee, H.J., Martone, M.E., and Rubin, D.L. (2010). Application of neuroanatomical ontologies for neuroimaging data annotation. Front Neuroinform 4, 10.

    PubMed  PubMed Central  Google Scholar 

  • Van De Werd, H.J.J.M., and Uylings, H.B.M. (2014). Comparison of (stereotactic) parcellations in mouse prefrontal cortex. Brain Struct Funct 219, 433–459.

    Article  PubMed  Google Scholar 

  • Vogelstein, J.T., Mensh, B., Häusser, M., Spruston, N., Evans, A.C., Kording, K., Amunts, K., Ebell, C., Muller, J., Telefont, M., et al. (2016). To the cloud! A grassroots proposal to accelerate brain science discovery. Neuron 92, 622–627.

    Article  PubMed Central  Google Scholar 

  • von Bartheld, C.S., Bahney, J., and Herculano-Houzel, S. (2016). The search for true numbers of neurons and glial cells in the human brain: A review of 150 years of cell counting. J Comp Neurol 524, 3865–3895.

    Article  PubMed  PubMed Central  Google Scholar 

  • von Economo, C., and Koskinas, G.N. (1925). Cytoarchitektonik der Hirnrinde des Erwachsenen Menschen. (Berlin: Springer).

    Google Scholar 

  • Wang, Q., Ding, S.L., Li, Y., Royall, J., Feng, D., Lesnar, P., Graddis, N., Naeemi, M., Facer, B., Ho, A., et al. (2020). The Allen mouse brain common coordinate framework: a 3D reference atlas. Cell 181, 936–953.e20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams, R.W. (2000). Mapping genes that modulate mouse brain development: a quantitative genetic approach. In: Goffinet A.M., and Rakic P., eds. Mouse Brain Development. Berlin: Springer. 21–49.

    Chapter  Google Scholar 

  • Windhorst, U., and Johansson, H. (1999). Modern Techniques in Neuroscience Research. New York: SpringerVerlag.

    Book  Google Scholar 

  • Winnubst, J., Bas, E., Ferreira, T.A., Wu, Z., Economo, M.N., Edson, P., Arthur, B.J., Bruns, C., Rokicki, K., Schauder, D., et al. (2019). Reconstruction of 1,000 projection neurons reveals new cell types and organization of long-range connectivity in the Mouse Brain. Cell 179, 268–281.e13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woodward, A., Hashikawa, T., Maeda, M., Kaneko, T., Hikishima, K., Iriki, A., Okano, H., and Yamaguchi, Y. (2018). The Brain/MINDS 3D digital marmoset brain atlas. Sci Data 5, 180009.

    Article  PubMed  PubMed Central  Google Scholar 

  • Xie, T., and He, Y. (2012). Mapping the Alzheimer’s brain with connectomics. Front Psychiatry 2.

  • Yuan, J., Gong, H., Li, A., Li, X., Chen, S., Zeng, S., and Luo, Q. (2015). Visible rodent brain-wide networks at single-neuron resolution. Front Neuroanat 9, 70.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yushkevich, P.A., Piven, J., Hazlett, H.C., Smith, R.G., Ho, S., Gee, J.C., and Gerig, G. (2006). User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. NeuroImage 31, 1116–1128.

    Article  PubMed  Google Scholar 

  • Zhang, B., Li, A., Yang, Z., Wu, J., Luo, Q., and Gong, H. (2011). Modified Golgi-Cox method for micrometer scale sectioning of the whole mouse brain. J Neurosci Methods 197, 1–5.

    Article  PubMed  Google Scholar 

  • Zhang, C., Yan, C., Ren, M., Li, A., Quan, T., Gong, H., and Yuan, J. (2017). A platform for stereological quantitative analysis of the brain-wide distribution of type-specific neurons. Sci Rep 7, 14334.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou, J.N., and Ni, R.J. (2016). The Tree Shrew (Tupaia belangeri chinensis) Brain in Stereotaxic Coordinates. New York: Springer.

    Book  Google Scholar 

  • Zilles, K. (2018). Brodmann: a pioneer of human brain mapping—his impact on concepts of cortical organization. Brain 141, 3262–3278.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zilles, K., and Amunts, K. (2010). Centenary of Brodmann’s map—conception and fate. Nat Rev Neurosci 11, 139–145.

    Article  CAS  PubMed  Google Scholar 

  • Zilles, K., Schleicher, A., Langemann, C., Amunts, K., Morosan, P., Palomero-Gallagher, N., Schormann, T., Mohlberg, H., Bürgel, U., Steinmetz, H., et al. (1997). Quantitative analysis of sulci in the human cerebral cortex: development, regional heterogeneity, gender difference, asymmetry, intersubject variability and cortical architecture. Hum Brain Mapp 5, 218–221.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (61721092, 81827901, 61890950, and 61890951). We appreciate the MOST group members of Britton Chance Centre for Biomedical Photonics for assistance with literature collection and comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui Gong or Qingming Luo.

Additional information

Compliance and ethics

The author(s) declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Z., Li, A., Gong, H. et al. Constructing the rodent stereotaxic brain atlas: a survey. Sci. China Life Sci. 65, 93–106 (2022). https://doi.org/10.1007/s11427-020-1911-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-020-1911-9

Key Words

Navigation