Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Nonconforming finite element Stokes complexes in three dimensions

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

Two nonconforming finite element Stokes complexes starting from the conforming Lagrange element and ending with the nonconforming P1-P0 element for the Stokes equation in three dimensions are studied. Commutative diagrams are also shown by combining nonconforming finite element Stokes complexes and interpolation operators. The lower order H(gradcurl)-nonconforming finite element only has 14 degrees of freedom, whose basis functions are explicitly given in terms of the barycentric coordinates. The H(gradcurl)-nonconforming elements are applied to solve the quad-curl problem, and the optimal convergence is derived. By the nonconforming finite element Stokes complexes, the mixed finite element methods of the quad-curl problem are decoupled into two mixed methods of the Maxwell equation and the nonconforming P1-P0 element method for the Stokes equation, based on which a fast solver is discussed. Numerical results are provided to verify the theoretical convergence rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amrouche C, Bernardi C, Dauge M, et al. Vector potentials in three-dimensional non-smooth domains. Math Methods Appl Sci, 1998, 21: 823–864

    Article  MathSciNet  MATH  Google Scholar 

  2. Arnold D N. Finite Element Exterior Calculus. CBMS-NSF Regional Conference Series in Applied Mathematics. Philadelphia: SIAM, 2018

    Book  MATH  Google Scholar 

  3. Arnold D N, Falk R S, Winther R. Finite element exterior calculus, homological techniques, and applications. Acta Numer, 2006, 15: 1–155

    Article  MathSciNet  MATH  Google Scholar 

  4. Austin T M, Manteuffel T A, McCormick S. A robust multilevel approach for minimizing H(div)-dominated functionals in an H1-conforming finite element space. Numer Linear Algebra Appl, 2004, 11: 115–140

    Article  MathSciNet  MATH  Google Scholar 

  5. Beirão da Veiga L, Dassi F, Vacca G. The Stokes complex for virtual elements in three dimensions. Math Models Methods Appl Sci, 2020, 30: 477–512

    Article  MathSciNet  MATH  Google Scholar 

  6. Boffi D, Brezzi F, Fortin M. Mixed Finite Element Methods and Applications. Springer Series in Computational Mathematics, vol. 44. Berlin-Heidelberg: Springer, 2013

    Book  MATH  Google Scholar 

  7. Brenner S C, Scott L R. The Mathematical Theory of Finite Element Methods, 3rd ed. New York: Springer, 2008

    Book  MATH  Google Scholar 

  8. Cakoni F, Haddar H. A variational approach for the solution of the electromagnetic interior transmission problem for anisotropic media. Inverse Probl Imaging, 2007, 1: 443–456

    Article  MathSciNet  MATH  Google Scholar 

  9. Cao S H, Chen L, Huang X H. Error analysis of a decoupled finite element method for quad-curl problems. J Sci Comput, 2022, 90: 29

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen L, Hu J, Huang X H. Fast auxiliary space preconditioners for linear elasticity in mixed form. Math Comp, 2018, 87: 1601–1633

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen L, Huang X H. Decoupling of mixed methods based on generalized Helmholtz decompositions. SIAM J Numer Anal, 2018, 56: 2796–2825

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen L, Huang X H. Finite element complexes in two dimensions. arXiv:2206.00851, 2022

  13. Chen L, Huang X H. Finite element de Rham and Stokes complexes in three dimensions. arXiv:2206.09525, 2022

  14. Chen L, Wu Y K, Zhong L, et al. MultiGrid preconditioners for mixed finite element methods of the vector Laplacian. J Sci Comput, 2018, 77: 101–128

    Article  MathSciNet  MATH  Google Scholar 

  15. Christiansen S H, Hu K B. Generalized finite element systems for smooth differential forms and Stokes’ problem. Numer Math, 2018, 140: 327–371

    Article  MathSciNet  MATH  Google Scholar 

  16. Christiansen S H, Winther R. Smoothed projections in finite element exterior calculus. Math Comp, 2008, 77: 813–829

    Article  MathSciNet  MATH  Google Scholar 

  17. Ciarlet P G. The Finite Element Method for Elliptic Problems. Studies in Mathematics and Its Applications. Amsterdam: North-Holland, 1978

    MATH  Google Scholar 

  18. Costabel M, McIntosh A. On Bogovskiĭ and regularized Poincaré integral operators for de Rham complexes on Lipschitz domains. Math Z, 2010, 265: 297–320

    Article  MathSciNet  MATH  Google Scholar 

  19. Crouzeix M, Raviart P A. Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I. RAIRO Sér Rouge, 1973, 7: 33–75

    MathSciNet  MATH  Google Scholar 

  20. Elman H C, Silvester D J, Wathen A J. Finite Elements and Fast Iterative Solvers: With Applications in Incompressible Fluid Dynamics. New York: Oxford University Press, 2005

    MATH  Google Scholar 

  21. Falk R S, Morley M E. Equivalence of finite element methods for problems in elasticity. SIAM J Numer Anal, 1990, 27: 1486–1505

    Article  MathSciNet  MATH  Google Scholar 

  22. Falk R S, Neilan M. Stokes complexes and the construction of stable finite elements with pointwise mass conservation. SIAM J Numer Anal, 2013, 51: 1308–1326

    Article  MathSciNet  MATH  Google Scholar 

  23. Fu G S, Guzmán J, Neilan M. Exact smooth piecewise polynomial sequences on Alfeld splits. Math Comp, 2020, 89: 1059–1091

    Article  MathSciNet  MATH  Google Scholar 

  24. Girault V, Raviart P A. Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms. Springer Series in Computational Mathematics, vol. 5. Berlin-Heidelberg-New York-Tokyo: Springer-Verlag, 1986

    Book  MATH  Google Scholar 

  25. Gopalakrishnan J, Demkowicz L F. Quasioptimality of some spectral mixed methods. J Comput Appl Math, 2004, 167: 163–182

    Article  MathSciNet  MATH  Google Scholar 

  26. Guzmán J, Lischke A, Neilan M. Exact sequences on Powell-Sabin splits. Calcolo, 2020, 57: 13

    Article  MathSciNet  MATH  Google Scholar 

  27. Guzmán J, Neilan M. A family of nonconforming elements for the Brinkman problem. IMA J Numer Anal, 2012, 32: 1484–1508

    Article  MathSciNet  MATH  Google Scholar 

  28. Guzmán J, Neilan M. Conforming and divergence-free Stokes elements on general triangular meshes. Math Comp, 2014, 83: 15–36

    Article  MathSciNet  MATH  Google Scholar 

  29. Hiptmair R. Canonical construction of finite elements. Math Comp, 1999, 68: 1325–1346

    Article  MathSciNet  MATH  Google Scholar 

  30. Hiptmair R, Xu J C. Nodal auxiliary space preconditioning in H(curl) and H(div) spaces. SIAM J Numer Anal, 2007, 45: 2483–2509

    Article  MathSciNet  MATH  Google Scholar 

  31. Hu K B, Zhang Q, Zhang Z M. Simple curl-curl-conforming finite elements in two dimensions. SIAM J Sci Comput, 2020, 42: A3859–A3877

    Article  MathSciNet  MATH  Google Scholar 

  32. Hu K B, Zhang Q, Zhang Z M. A family of finite element Stokes complexes in three dimensions. SIAM J Numer Anal, 2022, 60: 222–243

    Article  MathSciNet  MATH  Google Scholar 

  33. Huang X. New finite element methods and efficient algorithms for fourth order elliptic equations. PhD Thesis. Shanghai: Shanghai Jiao Tong University, 2010

    Google Scholar 

  34. John V, Linke A, Merdon C, et al. On the divergence constraint in mixed finite element methods for incompressible flows. SIAM Rev, 2017, 59: 492–544

    Article  MathSciNet  MATH  Google Scholar 

  35. Lee Y J. Uniform stability analysis of Austin, Manteuffel and McCormick finite elements and fast and robust iterative methods for the Stokes-like equations. Numer Linear Algebra Appl, 2010, 17: 109–138

    Article  MathSciNet  MATH  Google Scholar 

  36. Mardal K A, Tai X C, Winther R. A robust finite element method for Darcy-Stokes flow. SIAM J Numer Anal, 2002, 40: 1605–1631

    Article  MathSciNet  MATH  Google Scholar 

  37. Nédélec J C. Mixed finite elements in ℝ3. Numer Math, 1980, 35: 315–341

    Article  MathSciNet  MATH  Google Scholar 

  38. Nédélec J C. A new family of mixed finite elements in ℝ3. Numer Math, 1986, 50: 57–81

    Article  MathSciNet  MATH  Google Scholar 

  39. Neilan M. Discrete and conforming smooth de Rham complexes in three dimensions. Math Comp, 2015, 84: 2059–2081

    Article  MathSciNet  MATH  Google Scholar 

  40. Raviart P A, Thomas J M. A mixed finite element method for 2nd order elliptic problems. In: Mathematical Aspects of Finite Element Methods. Lecture Notes in Mathematics, vol. 606. Berlin: Springer, 1977, 292–315

    Chapter  Google Scholar 

  41. Scott L R, Zhang S Y. Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math Comp, 1990, 54: 483–493

    Article  MathSciNet  MATH  Google Scholar 

  42. Tai X C, Winther R. A discrete de Rham complex with enhanced smoothness. Calcolo, 2006, 43: 287–306

    Article  MathSciNet  MATH  Google Scholar 

  43. Wang M, Xu J C. The Morley element for fourth order elliptic equations in any dimensions. Numer Math, 2006, 103: 155–169

    Article  MathSciNet  MATH  Google Scholar 

  44. Zhang Q, Wang L X, Zhang Z M. H(curl2)-conforming finite elements in 2 dimensions and applications to the quad-curl problem. SIAM J Sci Comput, 2019, 41: A1527–A1547

    Article  MATH  Google Scholar 

  45. Zhang Q, Zhang Z. A family of curl-curl conforming finite elements on tetrahedral meshes. CSIAM Trans Appl Math, 2020, 1: 639–663

    Article  Google Scholar 

  46. Zhang S. Stable finite element pair for Stokes problem and discrete Stokes complex on quadrilateral grids. Numer Math, 2016, 133: 371–408

    Article  MathSciNet  MATH  Google Scholar 

  47. Zhang S. Mixed schemes for quad-curl equations. ESAIM Math Model Numer Anal, 2018, 52: 147–161

    Article  MathSciNet  MATH  Google Scholar 

  48. Zheng B, Hu Q Y, Xu J C. A nonconforming finite element method for fourth order curl equations in ℝ3. Math Comp, 2011, 80: 1871–1886

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 12171300 and 11771338), the Natural Science Foundation of Shanghai (Grant No. 21ZR1480500) and the Fundamental Research Funds for the Central Universities (Grant No. 2019110066).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuehai Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X. Nonconforming finite element Stokes complexes in three dimensions. Sci. China Math. 66, 1879–1902 (2023). https://doi.org/10.1007/s11425-021-2026-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-021-2026-7

Keywords

MSC(2020)

Navigation