Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Traffic aware routing in vehicular ad hoc networks: characteristics and challenges

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

Vehicular ad hoc networks (VANETs) are gaining tremendous interest among researchers and industries. Although the main reason for developing VANETs is traffic safety, many applications such as traffic status monitoring, road traffic management, routing and distribution of data, have emerged. VANETs exploit multi-hop communications among vehicles to deliver data packets. However, with fast mobility and intermittent link connectivity between vehicles, efficient and reliable routing in VANETs is becoming a challenging task. In order to make routing protocols robust to frequent communication disruptions and aware of unstable traffic and network conditions, several new routing metrics have been integrated with routing protocols. Such protocols are called traffic aware routing (TAR) protocols as their routing decisions are influenced by traffic and network status. The goal of this paper is to review the most recent traffic aware routing protocols while emphasising on traffic and network conditions awareness issues. In addition, this review investigated TAR protocols capabilities and limitations in terms of routing process, routing metrics measurement, forwarding mechanisms and recovery techniques. Moreover, challenges, critical issues and open research problems were discussed in the “Challenges and issues to consider” sections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Hossain, E., Chow, G., Leung, V. C., McLeod, R. D., Mii, J., Wong, V. W., & Yang, O. (2010). Vehicular telematics over heterogeneous wireless networks: A survey. Computer Communications, 33(7), 775–793. doi:10.1016/j.comcom.2009.12.010. http://www.sciencedirect.com/science/article/pii/S0140366410000022.

  2. Seredynski, M., & Bouvry, P. (2011). A survey of vehicular-based cooperative traffic information systems. In 2011 14th international IEEE Conference on, intelligent transportation systems (ITSC) (pp. 163–168). doi:10.1109/ITSC.2011.6083055.

  3. Tripp-Barba, C., Urquiza-Aguiar, L., Igartua, M. A., Rebollo-Monedero, D., de la Cruz Llopis, L. J., Mezher, A. M., et al. (2014). A multimetric, map-aware routing protocol for VANETs in urban areas. Sensors, 14(2), 2199–2224.

    Article  Google Scholar 

  4. Asefi, M., Céspedes, S., Shen, X., & Mark, J. W. (2011). A seamless quality-driven multi-hop data delivery scheme for video streaming in urban VANET scenarios. In 2011 IEEE international conference on (IEEE, 2011), communications (ICC) (pp. 1–5).

  5. Al-Sultan, S., Al-Doori, M. M., Al-Bayatti, A. H., & Zedan, H. (2014). A comprehensive survey on vehicular ad hoc network. Journal of Network and Computer Applications, 37(0), 380–392. doi:10.1016/j.jnca.2013.02.036. http://www.sciencedirect.com/science/article/pii/S108480451300074X.

  6. Zeadally, S., Hunt, R., Chen, Y. S., Irwin, A., & Hassan, A. (2012). Vehicular ad hoc networks (VANETS): Status, results, and challenges. Telecommunication Systems, 50(4), 217–241. doi:10.1007/s11235-010-9400-5.

    Article  Google Scholar 

  7. Hanshi, S. M., & Kadhum, M. M. (2013). Geographic routing protocol issues in vehicular ad hoc networks. In 2013 IEEE international conference on (IEEE, 2013), RFID-technologies and applications (RFID-TA) (pp. 1–7).

  8. Lee, J. W., Lo, C. C., Tang, S. P., Horng, M. F., & Kuo, Y. H. (2011). A hybrid traffic geographic routing with cooperative traffic information collection scheme in VANET. In 2011 13th international conference on, advanced communication technology (ICACT) (pp. 1496–1501).

  9. Fonseca, A., & Vazão, T. (2013). Applicability of position-based routing for VANET in highways and urban environment. Journal of Network and Computer Applications, 36(3), 961–973.

    Article  Google Scholar 

  10. Lo, C. C., & Kuo, Y. H. (2013). Junction-Based Traffic-Aware Routing scheme for vehicular ad hoc networks. In 2013 IEEE 24th international symposium on, personal indoor and mobile radio communications (PIMRC) (pp. 3001–3005). doi:10.1109/PIMRC.2013.6666661.

  11. Saleet, H., Basir, O., Langar, R., & Boutaba, R. (2010). Region-based location-service-management protocol for VANETs. IEEE Transactions on Vehicular Technology, 59(2), 917–931. doi:10.1109/TVT.2009.2033079.

    Article  Google Scholar 

  12. Darwish, T., & Bakar, K. A. (2015). Traffic density estimation in vehicular ad hoc networks: A review. Ad Hoc Networks, 24(Part A(0)), 337–351. doi:10.1016/j.adhoc.2014.09.007. http://www.sciencedirect.com/science/article/pii/S1570870514001966.

  13. Cadger, F., Curran, K., Santos, J., & Moffett, S. (2013). Communications surveys & tutorials. IEEE, 15(2), 621–653.

    Google Scholar 

  14. Karp, B., & Kung, H. T. (2000). GPSR: Greedy perimeter stateless routing for wireless networks. In Proceedings of the 6th annual international conference on Mobile computing and networking (ACM, 2000) (pp. 243–254).

  15. Stanica, R., Chaput, E., & Beylot, A. L. (2011). Local density estimation for contention window adaptation in vehicular networks. In 2011 IEEE 22nd international symposium on, personal indoor and mobile radio communications (PIMRC) (pp. 730–734). doi:10.1109/PIMRC.2011.6140062.

  16. Giudici, F., & Pagani, E. (2005). Spatial and traffic-aware routing (STAR) for vehicular systems. In L. Yang, O. Rana, B. Di Martino, & J. Dongarra (Eds.), High performance computing and communications. Lecture notes in computer science (Vol. 3726, pp. 77–86). Berlin, Heidelberg: Springer. doi:10.1007/11557654_11.

  17. Al-Shugran, M., Ghazali, O., Hassan, S., Nisar, K., & Arif, A. S. M. (2013). A qualitative comparison evaluation of the greedy forwarding strategies in Mobile Ad Hoc Network. Journal of Network and Computer Applications, 36(2), 887–897.

    Article  Google Scholar 

  18. Bilal, S. M., Bernardos, C. J., & Guerrero, C. (2013). Position-based routing in vehicular networks: A survey. Journal of Network and Computer Applications, 36(2), 685–697. doi:10.1016/j.jnca.2012.12.023. http://www.sciencedirect.com/science/article/pii/S1084804512002706.

  19. Nasir, M. K., Sohel, M. K., Rahman, M. T., & Islam, A. K. (2013). A review on position based routing protocol in vehicular adhoc network. American Journal of Engineering Research.

  20. Li, G., Wang, W., Yao, X., & Chen, W. (2013). SOBP: A sender-designated opportunistic broadcast protocol for VANET. Telecommunication Systems, 53(4), 453–467. doi:10.1007/s11235-013-9709-y.

    Article  Google Scholar 

  21. Yang, Q., Lim, A., & Agrawal, P. (2008). Connectivity aware routing in vehicular networks. In Wireless communications and networking conference, 2008. WCNC 2008. IEEE (pp. 2218–2223). doi:10.1109/WCNC.2008.392.

  22. Yang, Q., Lim, A., Li, S., Fang, J., & Agrawal, P. (2010). ACAR: Adaptive connectivity aware routing for vehicular ad hoc networks in city scenarios. Mobile Networks and Applications, 15(1), 36–60. doi:10.1007/s11036-009-0169-2.

    Article  Google Scholar 

  23. Mouzna, J., Uppoor, S., Boussedjra, M., & Pai, M. (2009). Density aware routing using road hierarchy for vehicular networks. in IEEE/INFORMS international conference on, service operations, logistics and informatics, 2009. SOLI ’09 (pp. 443–448). doi:10.1109/SOLI.2009.5203974.

  24. Benslimane, A., Barghi, S., & Assi, C. (2011). An efficient routing protocol for connecting vehicular networks to the Internet. Pervasive and Mobile Computing, 7(1), 98–113.

    Article  Google Scholar 

  25. Shafiee, K., & Leung, V. C. M. (2011). Connectivity-aware minimum-delay geographic routing with vehicle tracking in VANETs. Ad Hoc Network, 9(2), 131–141. doi:10.1016/j.adhoc.2010.06.003.

    Article  Google Scholar 

  26. Wu, D., Luo, J., Li, R., & Regan, A. (2011). Geographic load balancing routing in hybrid vehicular ad hoc betworks. In 2011 14th international IEEE conference on, intelligent transportation systems (ITSC) (pp. 2057–2062). doi:10.1109/ITSC.2011.6083019.

  27. Hashemi, H., & Khorsandi, S. (2012). Load balanced VANET routing in city environments. In 2012 IEEE 75th, vehicular technology conference (VTC Spring) (pp. 1–6). doi:10.1109/VETECS.2012.6240114.

  28. Yu, H., Yoo, J., & Ahn, S. (2013). A VANET routing based on the real-time road vehicle density in the city environment. In 2013 fifth international conference on, ubiquitous and future networks (ICUFN) (pp. 333–337). doi:10.1109/ICUFN.2013.6614836.

  29. Xiang, Y., Liu, Z., Liu, R., Sun, W., & Wang, W. (2013). GeoSVR: A map-based stateless VANET routing. Ad Hoc Networks, 11(7), 2125-2135. doi:10.1016/j.adhoc.2012.02.015. http://www.sciencedirect.com/science/article/pii/S1570870512000455.

  30. Cao, T., Zhang, X., Kong, L., Liu, X. Y., Shu, W., & Wu, M. Y. (2013). Road traffic density estimation in vehicular networks. Traffic aware routing in urban vehicular networks. In Wireless Communications and Networking Conference (WCNC), 2013 IEEE (IEEE, 2013) (pp. 2004–2009).

  31. Oliveira, R., Furtadoa, A., Bernardoa, L., Pintoa, P., et al. (2013). Improving path duration in high mobility vehicular ad hoc networks. Ad Hoc Networks, 11(1), 89–103.

    Article  Google Scholar 

  32. Jerbi, M., Senouci, S. M., Rasheed, T., & Ghamri-Doudane, Y. (2009). Towards efficient geographic routing in urban vehicular networks. IEEE Transactions on Vehicular Technology, 58(9), 5048–5059. doi:10.1109/TVT.2009.2024341.

    Article  Google Scholar 

  33. Bilal, S., Madani, S. A., & Khan, I. (2011). Enhanced junction selection mechanism for routing protocol in VANETs. The International Arab Journal of Information Technology, 8(4), 422–429.

  34. Alsharif, N., Cespedes, S., & Shen, X. (2013). iCAR: Intersection-based connectivity aware routing in vehicular ad hoc networks. In 2013 IEEE international conference on, communications (ICC) (pp. 1736–1741). doi:10.1109/ICC.2013.6654769.

  35. Zhao, C., Li, C., Zhu, L., Lin, H., & Li, J. (2012). A vehicle density and load aware routing protocol for VANETs in city scenarios. in 2012 international conference on, wireless communications signal processing (WCSP) (pp. 1–6). doi:10.1109/WCSP.2012.6542825.

  36. Li, C., Zhao, C., Zhu, L., Lin, H., & Li, J. (2013). Geographic routing protocol for vehicular ad hoc networks in city scenarios: a proposal and analysis. International Journal of Communication Systems. doi:10.1002/dac.2602.

  37. He, Y., Li, C., Han, X., & Lin, Q. (2014). A link state aware hierarchical road routing protocol for 3D scenario in VANETs. In R. H. Hsu & S. Wang (Eds.), Internet of vehicles technologies and services. Lecture notes in computer science (Vol. 8662). Berlin: Springer. doi:10.1007/978-3-319-11167-4_2.

  38. Ghafoor, K. Z., Lloret, J., Bakar, K. A., Sadiq, A. S., & Mussa, S. A. B. (2013). Beaconing approaches in vehicular ad hoc networks: A survey. Wireless personal communications, 73(3), 885–912.

    Article  Google Scholar 

  39. Ghafoor, K. Z., Bakar, K. A., van Eenennaam, M., Khokhar, R. H., & Gonzalez, A. J. (2013). A fuzzy logic approach to beaconing for vehicular ad hoc networks. Telecommunication Systems, 52(1), 139–149.

    Article  Google Scholar 

  40. Qin, H., Yu, C., Guo, L., & Zhou, Y. (2013). Adaptive state aware routing protocol for vehicle ad hoc network in urban scenarios. In 2013 10th IEEE international conference on (IEEE, 2013), control and automation (ICCA) (pp. 1376–1381).

  41. Cai, X., He, Y., Zhao, C., Zhu, L., & Li, C. (2014). LSGO: Link state aware geographic opportunistic routing protocol for VANETs. EURASIP Journal on Wireless Communications and Networking, 2014(1), 96. doi:10.1186/1687-1499-2014-96.

    Article  Google Scholar 

  42. Sarr, C., Chaudet, C., Chelius, G., & Lassous, I. (2008). Bandwidth estimation for IEEE 802.11-based ad hoc networks. IEEE Transactions on Mobile Computing, 7(10), 1228–1241. doi:10.1109/TMC.2008.41.

    Article  Google Scholar 

  43. Zhao, J., & Cao, G. (2008). VADD: Vehicle-assisted data delivery in vehicular ad hoc networks. IEEE Transactions on Vehicular Technology, 57(3), 1910–1922. doi:10.1109/TVT.2007.901869.

    Article  Google Scholar 

  44. LeBrun, J., Chuah, C. N., Ghosal, D., & Zhang, M. (2005). Knowledge-based opportunistic forwarding in vehicular wireless ad hoc networks. in Vehicular technology conference, 2005. VTC 2005-Spring. 2005 IEEE 61st, vol. 4 (IEEE, 2005) (vol. 4, pp. 2289–2293).

  45. Lochert, C., Mauve, M., Füßler, H., & Hartenstein, H. (2005). Geographic routing in city scenarios. ACM SIGMOBILE Mobile Computing and Communications Review, 9(1), 69–72.

    Article  Google Scholar 

  46. Hamidian, A., Krner, U., & Nilsson, A. (2005). Performance of internet access solutions in mobile ad hoc networks. In G. Kotsis & O. Spaniol (Eds.), Wireless systems and mobility in next generation internet. Lecture notes in computer science (Vol. 3427, pp. 189–201). Berlin, Heidelberg: Springer. doi:10.1007/978-3-540-31963-4_14.

  47. Seet, B. C., Liu, G., Lee, B. S., Foh, C. H., Wong, K. J., & Lee, K. K. (2004). A-STAR: A mobile ad hoc routing strategy for metropolis vehicular communications. In N. Mitrou, K. Kontovasilis, G. Rouskas, I. Iliadis, & L. Merakos (Eds.), Networking 2004. Lecture notes in computer science (Vol. 3042, pp. 989–999). Berlin, Heidelberg: Springer. doi:10.1007/978-3-540-24693-0_81.

  48. Das, S. R., Belding-Royer, E. M., & Perkins, C. E. (2003). Ad hoc on-demand distance vector (AODV) routing. RFC 3561.

  49. Ko, Y., & Vaidya, N. (2000). Location aided routing (LAR) in mobile ad hoc networks. Wireless Networks, 6(4), 307–321. doi:10.1023/A:1019106118419.

    Article  Google Scholar 

  50. Tripp Barba, C., Urquiza Aguiar, L., & Aguilar Igartua, M. (2013). Design and evaluation of GBSR-B, an improvement of GPSR for VANETs. Latin America Transactions, IEEE (Revista IEEE America Latina), 11(4), 1083–1089.

  51. Xiao, D., Peng, L., Asogwa, C. O., & Huang, L. (2011). An improved GPSR routing protocol. International Journal of Advanced Computer Technology, 3, 132–139.

    Google Scholar 

  52. Lee, K. C., Härri, J., Lee, U., Gerla, M. (2007). Enhanced perimeter routing for geographic forwarding protocols in urban vehicular scenarios. In Globecom Workshops, 2007 IEEE (IEEE, 2007) (pp. 1–10).

Download references

Acknowledgments

This research was financially supported by Ministry of Education (MOE), Malaysian International Scholarship (MIS). In addition, we gratefully acknowledge the technical support and research facilities provided by the Universiti Teknologi Malaysia (UTM), without which this work could not have been completed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tasneem Darwish.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Darwish, T., Abu Bakar, K. Traffic aware routing in vehicular ad hoc networks: characteristics and challenges. Telecommun Syst 61, 489–513 (2016). https://doi.org/10.1007/s11235-015-0008-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-015-0008-7

Keywords

Navigation