Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Crystal structures and magnetic properties of nitroxide radical-coordinated copper(II) and cobalt(II) complexes

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

The crystal structures and magnetic properties of three coordination compounds constructed from various nitroxide radicals L and MII(hfac)2(H2O)2 building blocks (M = Cu or Co and hfac = hexafluoroacetylacetonato) are described. In [(1)Cu(hfac)2]n, 4, the radical ligand L is coordinated to the metal through the oxygen atom of the nitroxide group and oxygen atom of its hydroxyl group, leading to a one-dimensional chain system. In [(2)2Cu(hfac)2]n, 5, two hydroxyl oxygen atoms of the radical ligand are coordinated to the metal, and the CoII centers adopt distorted octahedral geometry to give a mononuclear compound. For [(L)Cu(hfac)2]n, 6, the oxygen atom of the nitroxide group and nitrogen atom of the amino group of L are coordinated to the metal, leading to a one-dimensional chain system. The magnetic susceptibility study of the copper coordination compound 4 revealed weak ferromagnetic interactions between the metal center and the organic radical. The cobalt coordination compounds 5 and 6 both show antiferromagnetic interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Itoh K, Kinoshita M (eds) (2000) Molecular magnetism, new magnetic materials. Gordon Breach-Kodansha, Tokyo

    Google Scholar 

  2. Blundell SJ, Pratt FL (2004) J Phys Condens Matter 16:R771–R828

    Article  CAS  Google Scholar 

  3. Gatteschi D, Sessoli R, Villain J (2006) Molecular nanomagnets. Oxford University Press, Oxford

    Book  Google Scholar 

  4. Sorace L, Benelli C, Gatteschi D (2011) Chem Soc Rev 40:3092–3104

    Article  CAS  PubMed  Google Scholar 

  5. Gutlich P, Garcia Y, Goodwin HA (2000) Chem Soc Rev 29:419–427

    Article  CAS  Google Scholar 

  6. Kurmoo M (2009) Chem Soc Rev 38:1353–1379

    Article  CAS  PubMed  Google Scholar 

  7. Berliner LJ (ed) (1976) Spin labelling theory and applications, vols 1 and 2. Academic Press, New York

    Google Scholar 

  8. Nakatsuji S (2001) Adv Mater 13:1719–1724

    Article  CAS  Google Scholar 

  9. Nakatsuji S (2004) Chem Soc Rev 33:348–353

    Article  CAS  PubMed  Google Scholar 

  10. Fujino H, Amano T, Akustu H, Yamada J, Nakatsuji S (2004) Chem Commun 20:2310–2311

    Article  CAS  Google Scholar 

  11. Naktode K, Kottalanka RK, Jana SK, Panda TK (2013) Z Anorg Allg Chem 639:999–1003

    Article  CAS  Google Scholar 

  12. Iwamoto S, Kai W, Isogai T, Saito T, Isogai A, Iwata T (2010) Polym Degrad Stab 95:1394–1398

    Article  CAS  Google Scholar 

  13. Moons H, Goovaerts E, Gubskaya VP, Nuretdinov IA, Corvajac C, Franco L (2011) Phys Chem Chem Phys 13:3942–3951

    Article  CAS  PubMed  Google Scholar 

  14. Huras B, Zakrzewski J, Krawczyk M (2011) Heteroat Chem 22:137–147

    Article  CAS  Google Scholar 

  15. Bansal V, Delgado Y, Legault MD, Barletta G (2012) Molecules 17:1870–1882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wunderlich CH, Huber RG, Spitzer R, Liedl KR, Kloiber K, Kreutz C (2013) ACS Chem Biol 8:2697–2706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kinoshita H, Akutsu H, Yamada J, Nakatsuji S (2008) Inorg Chim Acta 361:4159–4163

    Article  CAS  Google Scholar 

  18. Kinoshita H, Akutsu H, Yamada J, Nakatsuji S (2006) Mendeleevsk Commun 16:305–306

    Article  CAS  Google Scholar 

  19. Boymel PM, Eaton GR, Eaton SS (1980) Inorg Chem 19:727–735

    Article  CAS  Google Scholar 

  20. Boymel PM, Braden GA, Eaton GR, Eaton SS (1980) Inorg Chem 19:735–739

    Article  CAS  Google Scholar 

  21. More JK, More KM, Eaton GR, Eaton SS (1984) J Am Chem Soc 106:5395–5402

    Article  CAS  Google Scholar 

  22. Anderson OP, Kuechler TC (1980) Inorg Chem 19:1417–1422

    Article  CAS  Google Scholar 

  23. Bencini A, Bencini C, Gatteschi D, Zanchini C (1984) J Am Chem Soc 106:5813–5818

    Article  CAS  Google Scholar 

  24. Benelli C, Gatteschi D, Carnegie DW, Carlin RL (1985) J Am Chem Soc 107:2560–2561

    Article  CAS  Google Scholar 

  25. Ratera I, Venciana J (2012) Chem Soc Rev 41:303–349

    Article  CAS  PubMed  Google Scholar 

  26. Arends IWCE, Li YX, Ausan R, Sheldon RA (2006) Tetrahedron 62:6659–6665

    Article  CAS  Google Scholar 

  27. Yin W, Chu C, Lu Q, Tao J, Liang X, Liu R (2010) Adv Synth Catal 352:113–118

    Article  CAS  Google Scholar 

  28. Vostrikova KE (2008) Coord Chem Rev 252:1409–1419

    Article  CAS  Google Scholar 

  29. Montanari F, Quici S, Henry-Riyad H, Tidwell TT (2005) Encyclopedia of reagents for organic synthesis. Wiley-VC-H, Weinheim

    Google Scholar 

  30. Olszak TA, Grabowski MJ (1993) Acta Cryst Sect C C49:1722–1723

    Article  CAS  Google Scholar 

  31. Togashi K, Imachi R, Tomioka K, Tsuboi H, Ishida T, Nogami T, Takeda N, Ishikawa M (1996) Bull Chem Soc Jpn 69:2821–2830

    Article  CAS  Google Scholar 

  32. Allão RA, Jordão AK, Resende JALC, Cunha AC, Ferreira VF, Novak MA, Sangregorio C, Sorace L, Vaz MGF (2011) Dalton Trans 40:10843–10850

    Article  CAS  PubMed  Google Scholar 

  33. Escobar LBL, Guedes GP, Soriano S, Speziali NL, Jordão AK, Cunha AC, Ferreira VF, Maxim C, Novak MA, Andruh M, Vaz MGF (2014) Inorg Chem 53:7508–7517

    Article  CAS  PubMed  Google Scholar 

  34. Reis SG, del Águila-Sánchez MA, Guedes GP, Ferreira GB, Novak MA, Speziali NL, López-Ortiz F, Vaz MGF (2014) Dalton Trans 43:14889–14901

    Article  CAS  PubMed  Google Scholar 

  35. Semmelhack MF, Schmid CR, Cortés DA, Chou CS (1984) J Am Chem Soc 106:3374–3376

    Article  CAS  Google Scholar 

  36. Briere R, Lemaire H, Rassat A (1965) A Bull Soc Chim Fr 11:3273–3283

    Google Scholar 

  37. Dutta S (2014) Pharm Chem J 48:448–451

    Article  CAS  Google Scholar 

  38. Boudreaux EA, Mulay LN (1976) Theory and application of molecular paramagnetism. Wiley, New York

    Google Scholar 

  39. SAINT-Plus, version 6.02, Bruker Analytical X-ray System, Madison, WI (1999)

  40. Sheldrick GM (1996) SADABS—an empirical absorption correction program; Bruker Analytical X-ray Systems, Madison, WI

  41. SHELXTL refinement program version 2016/6: Sheldrick GM (2015) Acta Crystallogr Sect C 71:3–8

  42. Gao YL, Nishihara S, Inoue K (2018) CrystEngComm 20:2961–2967

    Article  CAS  Google Scholar 

  43. Kahn O (1993) Molecular magnetism. VCH Publishers, New York

    Google Scholar 

  44. Carlin RL (1986) Magnetochemistry. Springer, Berlin, pp 65–67

    Book  Google Scholar 

  45. Jia QX, Tian H, Yan L, Ma Y, Gao EQ (2010) Inorg Chim Acta 363:3750–3756

    Article  CAS  Google Scholar 

  46. Lloret F, Julve M, Cano J, Ruiz-García R, Pardo E (2008) Inorg Chim Acta 361:3432–3445

    Article  CAS  Google Scholar 

  47. Mabbs FE, Machin DJ (2008) Magnetism and transition metal complexes. Dover Publications, New York

    Google Scholar 

  48. Baskett M, Lahti PM, Paduan-Filho A, Oliveira NF (2005) Inorg Chem 44:6725–6735

    Article  CAS  PubMed  Google Scholar 

  49. Caneschi A, Gatteschi D, Sessoli R, Rey P (1989) Acc Chem Res 22:392–398

    Article  CAS  Google Scholar 

  50. Titis J, Boca R (2011) Inorg Chem 50:11838–11845

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research (S) (No. 25220803) “Toward a New Class Magnetism by Chemically-controlled Chirality,” Chirality Research Center (CResCent) in Hiroshima University (the MEXT program for promoting the enhancement of research universities, Japan) and JSPS Core-to-Core Program, A. Advanced Research Networks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-Li Gao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 269 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, YL., Inoue, K. Crystal structures and magnetic properties of nitroxide radical-coordinated copper(II) and cobalt(II) complexes. Transit Met Chem 44, 283–292 (2019). https://doi.org/10.1007/s11243-018-00297-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-018-00297-w

Navigation